Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continuing Bragg Legacy of Structure Determination

08.09.2014

Over 100 years since the Nobel Prize-winning father and son team Sir William and Sir Lawrence Bragg pioneered the use of X-rays to determine crystal structure, University of Adelaide researchers have made significant new advances in the field.

Published in the journal Nature Chemistry today, Associate Professors Christian Doonan and Christopher Sumby and their team in the School of Chemistry and Physics, have developed a new material for examining structures using X-rays without first having to crystallise the substance.

“2014 is the International Year of Crystallography, recognising the importance of this 100-year-old science and how it underpins a vast range of the technological developments of our modern society,” says Associate Professor Sumby.

“Today, crystallography is an area of science that’s still providing new insights into the structures of materials – our new research is a prime example of that. It allows us to study chemical reactions that have just happened, or potentially even while they are still happening, which we can’t do using normal crystallography.”

The researchers are using a new nanomaterial – called a metal-organic framework – to bind the metal complex catalyst and its chemical reactants in place.

“We can then examine the structures of the reaction products using X-rays without having to isolate the product or grow crystals,” says Associate Professor Doonan.

“We are effectively taking snap-shots of the chemistry, enabling us to study the reaction products in their native state. In this way we can provide structural evidence for the chemical transformations that are taking place.”

The research, being undertaken in the Centre for Advanced Nanomaterials, is supported by the Australian Research Council and the Science and Industry Endowment Fund.

Sir William Bragg started his work on X-rays and crystal structure when he was Elder Professor of Mathematics and Physics at the University of Adelaide. His son Lawrence was a graduate of the University. The new work is being carried out in the Bragg Crystallography Facility at the University’s North Terrace campus.

Media Contact:

Associate Professor Chris Sumby
Deputy Director, Centre for Advanced Nanomaterials
School of Chemistry and Physics
The University of Adelaide
Phone: +61 8 8313 7406
Mobile: +61 (0)468 776 825
christopher.sumby@adelaide.edu.au

Associate Professor Christian Doonan
Director, Centre for Advanced Nanomaterials
School of Chemistry and Physics
The University of Adelaide
Phone: +61 8 8313 5770
Mobile: +61 (0)468 736 709
christian.doonan@adelaide.edu.au

Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | newswise

Further reports about: Crystallography Legacy Physics X-rays materials structure structures technological

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>