Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constant overlap

06.08.2010
EMBL scientists identify molecular machinery that maintains important feature of the spindle

During cell division, microtubules emanating from each of the spindle poles meet and overlap in the spindle's mid zone. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have uncovered the molecular mechanism that determines the extent of this overlap.

In a study published today in Cell, they were able to reconstruct such anti-parallel microtubule overlaps in vitro, and identify two proteins which are sufficient to control the formation and size of this important spindle feature.

Thomas Surrey and his group at EMBL found that one protein, PRC1, bundles together microtubules coming from opposite ends of the cell, attaching them to each other. It then recruits a second protein, a molecular motor from the kinesin-4 subfamily, increasing its concentration in the spindle mid zone. This motor walks along the overlapping microtubules like an officer on patrol, until it reaches one of the ends. When enough kinesin-4 molecules reach the end of the overlap, they inhibit the growth of microtubules there, thus keeping the overlap size constant without affecting microtubules elsewhere in the cell.

The spindle mid zone plays an important role not only in helping to align the chromosomes in metaphase, but also in the final stages of cell division, when it drives the physical separation of the two daughter-cells. But between these two stages, the two ends of the spindle must move away from each other, to drag half the genetic material to each side of the dividing cell. At this point, if PRC1 and kinesin-4 had stopped microtubule growth permanently in the central part of the spindle, the overlap would become smaller and smaller, until eventually the spindle itself would collapse, jeopardising cell division. But Surrey and colleagues found that PRC1 and kinesin-4 control the overlap size in an adaptive manner. As the spindle stretches and the overlap between microtubules becomes smaller, the scientists posit, the inhibitory effect of kinesin-4 diminishes, allowing the microtubule ends to grow.

"Our findings show how molecules millionths of millimetres small can control the size of a structure about a thousand times larger than themselves," Surrey concludes: "they help us to understand the fundamentals of cell division."

Lena Raditsch | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>