Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Compounds could be new class of cancer drugs

A team of Vanderbilt University Medical Center investigators has developed a group of chemical compounds that could represent a new class of drugs for treating cancer.

The compounds are the first selective inhibitors of the protein phospholipase D (PLD), an enzyme that has been implicated in multiple human cancers including breast, renal, gastric and colorectal.

The new inhibitors, reported in the February issue of Nature Chemical Biology, block the invasive migration of breast cancer cells, supporting their further development as antimetastatic agents. They will also be useful tools for understanding the complex roles of PLD in cellular physiology, said H. Alex Brown, Ph.D., professor of Pharmacology and one of the team leaders.

"PLD is associated with many fundamental cellular processes like secretion, migration, growth and proliferation. But the absence of selective inhibitors has really interfered with the ability of biologists to study this important enzyme," Brown said.

There are two related "isoforms" of PLD: PLD1 and PLD2. Both PLD enzymes produce phosphatidic acid, a key lipid metabolic and signaling molecule. But whether the two PLDs have different roles is an open question, one that the new isoform-selective inhibitors can now be used to address.

Brown and colleagues had discovered that PLD was important to the invasive migration of breast cancer cells in culture using a genetic tool called small interfering RNA (siRNA).

"When we had evidence from siRNA and other methods that blocking PLD resulted in dramatic effects of blocking metastatic invasion of breast cancer cells, we were highly motivated to attempt to make isoform-selective inhibitors," Brown said.

Craig Lindsley, Ph.D., a medicinal chemist who joined the Vanderbilt faculty after five years at Merck Research Laboratories, and his group used a previously described PLD inhibitor as a starting point for a chemistry process called diversity-oriented synthesis. The team screened resulting compounds for activity against PLD1 and PLD2 using in vitro and cell-based screening tools developed in Brown's laboratory.

"Without these high quality screening assays and rapid turnaround, this process wouldn't have worked," said Lindsley, associate professor of Pharmacology and Chemistry. The researchers were able to generate compounds that selectively inhibited PLD1 or PLD2, and other compounds that inhibited both isoforms.

"With the compounds we've made, we can almost choose the range at which we'd like to inhibit the different isoforms, something that's never before been possible," Lindsley said.

The researchers demonstrated that the compounds act directly on the PLD enzymes (using purified proteins), and they showed that they blocked the invasive migration behavior of three different breast cancer cell lines.

"These inhibitors are the key tools we need to really probe the biology, and we're obviously hoping to develop them for therapeutic applications too," Brown added. "Not only is Craig an excellent chemist, but he really knows about making compounds that have the potential to become drugs, and that has had a very positive influence on this collaboration."

In focusing on PLD, Brown, Lindsley and their colleagues are carrying the torch forward for an enzyme that was famously characterized at Vanderbilt. John Exton, M.D., Ph.D., professor of Molecular Physiology & Biophysics and Pharmacology, was elected to the National Academy of Sciences for his work on PLDs.

The researchers will now optimize their new compounds for in vivo studies and to give them characteristics compatible with being good medications. They are also expanding their research into other areas of biology – in addition to studying the inhibitors in breast cancer models, they will explore how they work in cell systems that model brain tumors, rheumatoid arthritis and viral infections.

Other authors of the current report included Sarah Scott, Ph.D., Paige Selvy, Jason Buck, Ph.D., Hyekyung Cho, Ph.D., Tracy Criswell, Ph.D., Ashley Thomas, Michelle Armstrong and Carlos Arteaga, M.D. The research was supported by the A.B. Hancock Jr. Memorial Laboratory for Cancer Research and the Vanderbilt Institute for Chemical Biology.

Leigh MacMillan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>