Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound may provide drug therapy approach for Huntington's disease

24.06.2011
UT Southwestern Medical Center researchers have identified compounds that appear to inhibit a signaling pathway in Huntington's disease, a finding that may eventually lead to a potential drug therapy to help slow the progression of degenerative nerve disorders.

"Our studies have uncovered a new therapeutic target for Huntington's disease treatment and possibly for other neurodegenerative diseases," said Dr. Ilya Bezprozvanny, professor of physiology and senior author of the study, published in today's issue of Chemistry and Biology. "In addition, we now have this new series of compounds that gives us a tool to study the pathogenesis of Huntington's disease."

Huntington's disease is a fatal genetic disorder in which certain brain cells waste away. More than 250,000 people in the U.S. have the disorder or are at risk for it. The most common form is adult-onset, with symptoms usually developing in patients in their mid-30s and 40s.

The disease results in uncontrolled movements, psychiatric disturbance, gradual dementia and eventually death. There is no therapy available currently to slow the progression of the disease.

Scientists at UT Southwestern found that quinazoline-derived compounds effectively block what is known as the store-operated calcium entry signaling pathway, which was never before implicated in Huntington nerve cells but that might be a therapeutic target in the disease.

Dr. Bezprozvanny's laboratory research has contributed to growing scientific evidence that suggests abnormalities in neuronal calcium signaling play an important role in the development of Huntington's disease. UT Southwestern researchers demonstrated in the current study that the quinoline compounds – supplied by EnVivo – protected brain cells.

"If this holds, this compound can be considered to have potential therapeutic application for Huntington's," he said. "As we ultimately seek a cure, we are encouraged to have found something that may slow the progress or delay the onset of the disease."

Other UT Southwestern researchers involved were Jun Wu, research scientist in physiology and lead author, and physiology research associates Xuesong Chen and Dr. Qingqing Wu. Researchers from EnVivo and the Institute of Cytology Russian Academy of Sciences, in St. Petersburg, also participated in the study.

The study, which used cultured mouse nerves, was funded by EnVivo, the National Institute of Neurological Disorders and Stroke, CHDI Foundation and the Russian Basic Research Foundation.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>