Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound defeats drug-resistant bacteria

29.11.2011
Chemists at Brown University have synthesized a new compound that makes drug-resistant bacteria susceptible again to antibiotics.

The compound — BU-005 — blocks pumps that a bacterium employs to expel an antibacterial agent called chloramphenicol. The team used a new and highly efficient method for the synthesis of BU-005 and other C-capped dipeptides. Results appear in Bioorganic and Medicinal Chemistry.

It’s no wonder that medicine’s effort to combat bacterial infections is often described as an arms race. When new drugs are developed to combat infections, the bacterial target invariably comes up with a deterrent.

A particularly ingenious weapon in the bacterial arsenal is the drug efflux pump. These pumps are proteins located in the membranes of bacteria that can recognize and expel drugs that have breached the membranes. In some cases, the bacterial pumps have become so advanced they can recognize and expel drugs with completely different structures and mechanisms.

“This turns out to be a real problem in clinical settings, especially when a bacterial pathogen acquires a gene encoding an efflux pump that acts on multiple antibiotics,” said Jason Sello, assistant professor of chemistry at Brown University. “In the worst case scenario, a bacterium can go from being drug-susceptible to resistant to five or six different drugs by acquiring a single gene.”

A new way to attack drug-resistant bacteria: “If drug efflux pumps are inhibited, then bacteria will be susceptible to drugs again.”That leaves two choices: Make more new and costly antibiotics or find a way around the pump. Sello and his group chose the latter. In a paper published in the journal Bioorganic and Medicinal Chemistry, the team reports it has discovered a new compound of C-capped dipeptides, called BU-005, to circumvent a family of drug-efflux pumps associated with Gram-positive bacteria, which include the dangerous MRSA and tuberculosis strains. Until that discovery, C-capped dipeptides were known to work only against an efflux pump family associated with Gram-negative bacteria.

“If drug efflux pumps are inhibited, then bacteria will be susceptible to drugs again,” Sello said. “This approach is of interest because one would have to discover efflux pump inhibitors rather than entirely new kinds of antibacterial drugs.”

Recently, a company called MPEX Pharmaceuticals discovered that specific C-capped dipeptides could block the efflux pumps of the RND family, which are responsible for much of the drug resistance in Gram-negative bacteria. One of these compounds developed at MPEX advanced to phase I of an FDA clinical trial. Sello and his co-authors investigated whether C-capped dipeptides could block the pumps of another drug efflux family, called the major facilitator superfamily (MFS), which is associated mostly with Gram-positive bacteria.

The Brown team thought that new and perhaps more potent C-capped dipeptide efflux pump blockers could be discovered. Since it is not possible to predict which C-capped dipeptides would be efflux pump blockers, they synthesized a collection of structurally diverse C-capped dipeptides and screened it for compounds with new or enhanced activities.

Normally, this is a four- to five-step process. Sello’s group reduced that to two steps, taking advantage of a technique used in other chemistry practices, known as the Ugi reaction. Using this approach, the team was able to prepare dozens of different C-capped dipeptides. They assessed each compound’s ability to block two efflux pumps in the bacterium Streptomyces coelicolor, a relative of the human pathogen Mycobacterium tuberculosis and which resists chloramphenicol, one of the oldest antibacterial drugs.

From a collection of nearly 100 C-capped dipeptides that they prepared and tested, the group discovered BU-005. The new compound excited the researchers because it prevented the MFS efflux pump family from expelling chloramphenicol. Until now, structurally related C-capped dipeptides had only been reported to prevent chloramphenicol expulsion by other drug efflux pump families.

“Our findings that C-capped dipeptides inhibit efflux pumps in both Gram-positive and Gram-negative bacteria should reinvigorate interest in these compounds," Sello said. "Moreover, our simplified synthetic route should make the medicinal chemistry on this class of compounds much simpler.”

Two Brown undergraduate students, Daniel Greenwald ’12, and Jessica Wroten ’11, helped perform the research and are contributing authors on the paper.

Greenwald joined the team in his freshman year, after reaching out to Sello. “This project was the first real immersion I had into chemistry research at an advanced level,” said Greenwald, of Madison, Wisc. “It was an amazing opportunity to be able to use the tools of synthetic chemistry to address problems from molecular biology. It was definitely one of the most engaging aspects of my experience at Brown.”

Babajide Okandeji, who earned his doctorate last May and is a new products quality control chemist at Waters Corp. in Taunton, Mass., is the paper’s first author.

Brown University funded the work. Greenwald was supported by a Royce Fellows Program. Wroten was funded by a Brown University Undergraduate Teaching and Research Assistantship (UTRA) during the summer of 2010.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>