Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining Two Peptide Inhibitors Might Block Tumor Growth

15.03.2011
A new study suggests that combining two experimental anticancer peptide agents might simultaneously block formation of new tumor blood vessels while also inhibiting the growth of tumor cells.

This early test of the two agents in a breast cancer model suggests that the double hit can stifle tumor progression, avoid drug resistance and cause few side effects, say researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) who developed the agents and evaluated their effectiveness in laboratory and animal tests.

The scientists designed one of the agents to prevent human epithelial growth factor from interacting with HER-2, a molecule that marks a particularly aggressive form of breast cancer. The other inhibitor blocks the action of vascular endothelial growth factor (VEGF), which stimulates the growth of new blood vessels that tumors need to grow beyond a certain size.

The findings are described in two papers published online in the Journal of Biological Chemistry. One presents the development of a novel VEGF inhibitor; the other describes the HER-2 inhibitor and the preclinical testing of the two agents together.

“When we combined our peptide HER-2 inhibitor with the VEGF peptide that inhibits angiogenesis, we observed significant additive benefits in reducing tumor burdens in preclinical studies,” says principal investigator Pravin Kaumaya, professor of obstetrics and gynecology, of molecular and cellular biochemistry, and of microbiology, and director of the division of vaccine development at the OSUCCC – James.

The strategy of targeting both HER-2 and VEGF pathways should also discourage the development of drug resistance, Kaumaya says, because it simultaneously inhibits two pathways that are essential for tumor survival. “Combined peptide inhibitors might be appropriate in several types of cancer to overcome acquired resistance and provide clinical benefit,” he adds.

Peptide inhibitors consist of short chains of amino acids (the VEGF inhibitor is 22 amino acids long) that conform in shape to the active site of the target receptor. In addition, Kaumaya engineered the VEGF peptide to be resistant to protease, an enzyme, thereby increasing its efficacy. The shape of the peptide HER-2 inhibitor engineered by Kaumaya and his colleagues, for example, is highly specific for the HER-2 receptor. It physically binds to the receptor, which prevents another substance, called epithelial growth factor, from contacting the receptor and stimulating the cancer cells to grow.

Other categories of targeted drugs in clinical use are humanized monoclonal antibodies and small-molecule TKI inhibitors. Both groups are associated with severe side effects and are very expensive, Kaumaya says. “We believe peptide inhibitors offer non-toxic, less-expensive alternatives to humanized monoclonal antibodies and small-molecule inhibitors for the treatment of solid tumors, with the potential for improved efficacy and better clinical outcomes,” he says.

Funding from NIH supported this research.

Other Ohio State researchers involved in the two studies were Kevin C. Foy, Daniele Vicari, Eric Liotta, Zhenzhen Liu, Gary Phillips and Megan Miller.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (http://cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 205-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>