Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining two genome analysis approaches supports immune system contribution to autism

07.12.2012
Researchers using novel approaches and methodologies of identifying genes that contribute to the development of autism have found evidence that disturbances in several immune-system-related pathways contribute to development of autism spectrum disorders.

The report published December 4 in the open-access journal PLOS ONE powerfully supports a role for the immune function in autism by integrating analysis of autism-associated DNA sequence variations with that of markers identified in studies of families affected by autism.

"Others have talked about immune function contributions to autism, but in our study immune involvement has been identified through a completely nonbiased approach," says Vishal Saxena, PhD, of the Massachusetts General Hospital (MGH) Department of Neurology, first, corresponding and co-senior author of the PLOS ONE paper. "We let the data tell us what was most important; and most tellingly, viral infection pathways were most important in this immune-related mechanism behind autism."

Genetic studies of families including individuals with autism have indentified linkages with different locations in the genome. Since traditional interpretation methods implicate the gene closest to a marker site as the cause of a condition, those studies appeared to point to different genes affecting different families. However, Saxena's team realized that, since autism has typical symptoms and affects the same biological processes, a common molecular physiology must be affecting the different families studied. To search for genetic pathways incorporating these autism-associated sites, they developed a methodology called Linkage-ordered Gene Sets (LoGS) that analyzes all of the genes within a particular distance from marker sites and ranks them according to their distance from the marker.

Saxena's team first analyzed previously identified copy-number variants (CNVs) – deletions or duplications of large DNA segments – linked to autism, and identified associated pathways for the first time. After finding that the two pathways most frequently affected by CNVs in autism were related to immune function, they went on to identify three additional immune-related pathways among the top 20 sets of genes with autism-associated CNVs.

They then conducted LoGS analysis on the five CNV-identified pathways, which they called iCNV-5, along with 186 other pathways involved in a range of biologic functions, ranking them according to their distance from marker sites identified in family studies. Four of the five iCNV-5 pathways received the top four rankings in the LoGS analysis, strongly supporting an immune function role in autism. Additional pathways involved in neurodevelopment were highly ranked in both the CNV and LoGS analyses.

"The idea behind LoGS is akin to viewing a digital photograph," says Saxena, an instructor in Neurology at Harvard Medical School. "When one looks at a digital image from very close up, one only sees a few pixels and is unable to recognize the picture. Zooming out however, makes the picture understandable. In the same way, looking at single genes may lead to a disorganized view of a disease, but zooming out to the pathway level clarifies and unifies the mechanism."

The immune system genes included in the iCNV-5 pathways code for two different types of proteins – interferons, in which DNA segments were reduced or absent in the iCNV-5 pathways, and chemokines, which showed duplication of DNA segments. Interferons help control viral infections, so reduced production of interferons could delay control of a viral infection in a pregnant woman and her fetus. Viral infections also induce the production of chemokines, which have an additional role in fetal brain development. A combination of reduced interferon levels, which would prolong the course of a viral infection, and elevated chemokine levels could potentially alter brain development in an infected fetus. The researchers are continuing to investigate how these and other immune pathways may be involved in the development of autism.

The co-senior author of the PLOS ONE report is Isaac Kohane, MD, PhD, Boston Children's Hospital. Additional co-authors are Shweta Ramdas, University of Michigan; Courtney Rothrock Ochoa, University of South Alabama College of Medicine; David Wallace, PhD, Massachusetts Institute of Technology; and Pradeep Bhide, PhD, Florida State University. The study was supported by National Institutes of Health grant P50MH94267 and the Nancy Lurie Marks Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>