Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combining two genome analysis approaches supports immune system contribution to autism

Researchers using novel approaches and methodologies of identifying genes that contribute to the development of autism have found evidence that disturbances in several immune-system-related pathways contribute to development of autism spectrum disorders.

The report published December 4 in the open-access journal PLOS ONE powerfully supports a role for the immune function in autism by integrating analysis of autism-associated DNA sequence variations with that of markers identified in studies of families affected by autism.

"Others have talked about immune function contributions to autism, but in our study immune involvement has been identified through a completely nonbiased approach," says Vishal Saxena, PhD, of the Massachusetts General Hospital (MGH) Department of Neurology, first, corresponding and co-senior author of the PLOS ONE paper. "We let the data tell us what was most important; and most tellingly, viral infection pathways were most important in this immune-related mechanism behind autism."

Genetic studies of families including individuals with autism have indentified linkages with different locations in the genome. Since traditional interpretation methods implicate the gene closest to a marker site as the cause of a condition, those studies appeared to point to different genes affecting different families. However, Saxena's team realized that, since autism has typical symptoms and affects the same biological processes, a common molecular physiology must be affecting the different families studied. To search for genetic pathways incorporating these autism-associated sites, they developed a methodology called Linkage-ordered Gene Sets (LoGS) that analyzes all of the genes within a particular distance from marker sites and ranks them according to their distance from the marker.

Saxena's team first analyzed previously identified copy-number variants (CNVs) – deletions or duplications of large DNA segments – linked to autism, and identified associated pathways for the first time. After finding that the two pathways most frequently affected by CNVs in autism were related to immune function, they went on to identify three additional immune-related pathways among the top 20 sets of genes with autism-associated CNVs.

They then conducted LoGS analysis on the five CNV-identified pathways, which they called iCNV-5, along with 186 other pathways involved in a range of biologic functions, ranking them according to their distance from marker sites identified in family studies. Four of the five iCNV-5 pathways received the top four rankings in the LoGS analysis, strongly supporting an immune function role in autism. Additional pathways involved in neurodevelopment were highly ranked in both the CNV and LoGS analyses.

"The idea behind LoGS is akin to viewing a digital photograph," says Saxena, an instructor in Neurology at Harvard Medical School. "When one looks at a digital image from very close up, one only sees a few pixels and is unable to recognize the picture. Zooming out however, makes the picture understandable. In the same way, looking at single genes may lead to a disorganized view of a disease, but zooming out to the pathway level clarifies and unifies the mechanism."

The immune system genes included in the iCNV-5 pathways code for two different types of proteins – interferons, in which DNA segments were reduced or absent in the iCNV-5 pathways, and chemokines, which showed duplication of DNA segments. Interferons help control viral infections, so reduced production of interferons could delay control of a viral infection in a pregnant woman and her fetus. Viral infections also induce the production of chemokines, which have an additional role in fetal brain development. A combination of reduced interferon levels, which would prolong the course of a viral infection, and elevated chemokine levels could potentially alter brain development in an infected fetus. The researchers are continuing to investigate how these and other immune pathways may be involved in the development of autism.

The co-senior author of the PLOS ONE report is Isaac Kohane, MD, PhD, Boston Children's Hospital. Additional co-authors are Shweta Ramdas, University of Michigan; Courtney Rothrock Ochoa, University of South Alabama College of Medicine; David Wallace, PhD, Massachusetts Institute of Technology; and Pradeep Bhide, PhD, Florida State University. The study was supported by National Institutes of Health grant P50MH94267 and the Nancy Lurie Marks Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>