Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining two genome analysis approaches supports immune system contribution to autism

07.12.2012
Researchers using novel approaches and methodologies of identifying genes that contribute to the development of autism have found evidence that disturbances in several immune-system-related pathways contribute to development of autism spectrum disorders.

The report published December 4 in the open-access journal PLOS ONE powerfully supports a role for the immune function in autism by integrating analysis of autism-associated DNA sequence variations with that of markers identified in studies of families affected by autism.

"Others have talked about immune function contributions to autism, but in our study immune involvement has been identified through a completely nonbiased approach," says Vishal Saxena, PhD, of the Massachusetts General Hospital (MGH) Department of Neurology, first, corresponding and co-senior author of the PLOS ONE paper. "We let the data tell us what was most important; and most tellingly, viral infection pathways were most important in this immune-related mechanism behind autism."

Genetic studies of families including individuals with autism have indentified linkages with different locations in the genome. Since traditional interpretation methods implicate the gene closest to a marker site as the cause of a condition, those studies appeared to point to different genes affecting different families. However, Saxena's team realized that, since autism has typical symptoms and affects the same biological processes, a common molecular physiology must be affecting the different families studied. To search for genetic pathways incorporating these autism-associated sites, they developed a methodology called Linkage-ordered Gene Sets (LoGS) that analyzes all of the genes within a particular distance from marker sites and ranks them according to their distance from the marker.

Saxena's team first analyzed previously identified copy-number variants (CNVs) – deletions or duplications of large DNA segments – linked to autism, and identified associated pathways for the first time. After finding that the two pathways most frequently affected by CNVs in autism were related to immune function, they went on to identify three additional immune-related pathways among the top 20 sets of genes with autism-associated CNVs.

They then conducted LoGS analysis on the five CNV-identified pathways, which they called iCNV-5, along with 186 other pathways involved in a range of biologic functions, ranking them according to their distance from marker sites identified in family studies. Four of the five iCNV-5 pathways received the top four rankings in the LoGS analysis, strongly supporting an immune function role in autism. Additional pathways involved in neurodevelopment were highly ranked in both the CNV and LoGS analyses.

"The idea behind LoGS is akin to viewing a digital photograph," says Saxena, an instructor in Neurology at Harvard Medical School. "When one looks at a digital image from very close up, one only sees a few pixels and is unable to recognize the picture. Zooming out however, makes the picture understandable. In the same way, looking at single genes may lead to a disorganized view of a disease, but zooming out to the pathway level clarifies and unifies the mechanism."

The immune system genes included in the iCNV-5 pathways code for two different types of proteins – interferons, in which DNA segments were reduced or absent in the iCNV-5 pathways, and chemokines, which showed duplication of DNA segments. Interferons help control viral infections, so reduced production of interferons could delay control of a viral infection in a pregnant woman and her fetus. Viral infections also induce the production of chemokines, which have an additional role in fetal brain development. A combination of reduced interferon levels, which would prolong the course of a viral infection, and elevated chemokine levels could potentially alter brain development in an infected fetus. The researchers are continuing to investigate how these and other immune pathways may be involved in the development of autism.

The co-senior author of the PLOS ONE report is Isaac Kohane, MD, PhD, Boston Children's Hospital. Additional co-authors are Shweta Ramdas, University of Michigan; Courtney Rothrock Ochoa, University of South Alabama College of Medicine; David Wallace, PhD, Massachusetts Institute of Technology; and Pradeep Bhide, PhD, Florida State University. The study was supported by National Institutes of Health grant P50MH94267 and the Nancy Lurie Marks Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>