Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combating Secondary Infections in Clinics

Just dive in: natural product hybrid provides antimicrobial and cell-resistant surfaces

Infections following treatment in clinics, retirement homes, and long-term care facilities are a grave problem for patients, and resistant germs can be particularly devastating.

“High infection rates are in particular observed related to implants, catheters, and stents,” reports Karl Gademann, “those for urinary catheters mounting up to 30 % per week!” In cooperation with his team at the Swiss Federal Institute of Technology in Lausanne, he has developed a process for coating surfaces with an antimicrobial layer. As reported in the journal Angewandte Chemie, their system is based on hybrid molecules derived from various natural products.

For a patient, the results are particularly grave if an infection occurs in an implant. Usually, replacement of the affected part is the only possible treatment. “One particularly attractive approach is the application of antibiotics directly on the material,” says Gademann. To test their idea, the team from Lausanne chose to use natural product hybrids: biologically active fragments of various natural products are coupled to combine two different modes of action.

... more about:
»HYBRID »Implant

The hybrid produced by Gademann’s team is made of three parts: two natural products are coupled by means of a polymer bridge. The first substance is anachelin, an iron transporter (siderophore) from cyanobacteria. Anachelin strongly and selectively binds metal oxides. The majority of implants are made from a metal oxide: highly biocompatible titanium dioxide. Anachelin fixes the hybrid firmly to the surface of the implant. The second natural product is the antibiotic vancomycin, which disrupts the biosynthesis of cell walls and thus stops bacterial growth. The coupling component is polyethylene glycol, a chemically inert, nontoxic polymer. It also assures that dead bacteria and cell components cannot bind to the surface.

The hybrid can be applied to titanium dioxide components in a simple dunking procedure. “We were able to demonstrate that our hybrid firmly attaches to titanium dioxide surfaces and effectively hinders infection with Bacillus subtilis as well as the attachment of cellular material,” says Gademann.

| Angewandte Chemie International
Further information:

Further reports about: HYBRID Implant

More articles from Life Sciences:

nachricht How the African clawed frog got an extra pair of genes: Whole genome sequence reveals evolutionary history of Xenopus laevis
27.10.2016 | Hokkaido University

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>