Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia engineer observes surprising behavior of cells during blood-vessel formation

08.03.2011
Great deal of variation found in behavior of genetically identical cells -- noise may be a clue

Biologists tend to look at cells in bulk, observing them as a group and taking the average behavior as the norm — the assumption is that genetically identical cells all behave the same way.

In a paper to be published in the online Early Edition of Proceedings of the National Academy of Sciences the week of March 7, 2011, Sam Sia, assistant professor of biomedical engineering at Columbia Engineering, presents the results of his four-year tissue-engineering study that show a surprising range of variation in how individual cells behave during formation of a blood vessel.

Sia and his team used a new method to painstakingly observe and track individual behaviors, characterizing, for the first time, what happens when human endothelial cells move from an initial dispersed state to the formation of capillary-like structures.

"We were really surprised by this behavior," says Sia, who was named one of the world's top young innovators for 2010 by MIT's Technology Review for his work in biotechnology and medicine. "In contrast to the population-averaged behavior that most studies report, most individual cells followed distinct patterns of cell-shape changes that were not reflected in the bulk average."

This is one of the first explicit studies to look at the variations between cells during tissue formation, and overturns the assumption that genetically identical cells behave in generally similar ways. Using a systematic approach to quantifying the changes in cell shape and movement for every single endothelial cell over time, the Columbia Engineering team found unexpected hidden patterns in behavior. In addition to discovering that most cells behave differently from the average, the team also observed that groups of cells behaved in similar fashions, and that some of these clusters of behavior resulted in distinct structural roles in the final blood-vessel network.

The origins of the variations in behavior are not known right now. Sia notes that "one possibility is simply random noise or naturally occurring fluctuations, which have been shown by other researchers to be important in producing biologically significant variations in gene expression and other subcellular processes. It's also possible there are subtle local variations in the extracellular environment that we're not aware of yet."

Sia says an application of this work is to exploit his technique to identify new drugs that modify angiogenesis. "A lot of drugs that either help or hinder blood-vessel formation have unknown mechanisms. This technique can potentially unravel some of those mechanisms, and help identify compounds that modulate specific aspects of how blood vessels form." In addition, knowledge of how individual cells behave will help in high-precision tissue engineering, an ongoing field of research in Sia's lab. "Knowledge of how individual cells or groups of cells behave enhances our understanding of how native tissues self-organize," he says. "This could ultimately enable more precise approaches for engineering complex multicellular tissues."

Sia was also named in 2010 by NASA as one of the ten innovators in human health and sustainability. In 2008, he received a CAREER award from the National Science Foundation that included a $400,000 grant to support his other research specialty in three-dimensional tissue engineering. A recipient of the Walter H. Coulter Early Career Award in 2008, Sia participated in the National Academy of Engineering's U.S. Frontiers of Engineering symposium for the nation's brightest young engineers in 2007.

His research is focused on developing new high-resolution tools to control the extracellular environments around cells, in order to study how they interact to form human tissues and organs. His lab uses techniques from a number of different fields, including biochemistry, molecular biology, microfabrication, microfluidics, materials chemistry, and cell and tissue biology.

Sia earned his B.Sc. in biochemistry from the University of Alberta, and his Ph.D. in biophysics from Harvard University, where he also a postdoctoral fellow in chemistry and chemical biology.

This study has been supported by funding from the National Institutes of Health (National Heart, Lung, and Blood Institute) and the National Science Foundation.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>