Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia engineer observes surprising behavior of cells during blood-vessel formation

08.03.2011
Great deal of variation found in behavior of genetically identical cells -- noise may be a clue

Biologists tend to look at cells in bulk, observing them as a group and taking the average behavior as the norm — the assumption is that genetically identical cells all behave the same way.

In a paper to be published in the online Early Edition of Proceedings of the National Academy of Sciences the week of March 7, 2011, Sam Sia, assistant professor of biomedical engineering at Columbia Engineering, presents the results of his four-year tissue-engineering study that show a surprising range of variation in how individual cells behave during formation of a blood vessel.

Sia and his team used a new method to painstakingly observe and track individual behaviors, characterizing, for the first time, what happens when human endothelial cells move from an initial dispersed state to the formation of capillary-like structures.

"We were really surprised by this behavior," says Sia, who was named one of the world's top young innovators for 2010 by MIT's Technology Review for his work in biotechnology and medicine. "In contrast to the population-averaged behavior that most studies report, most individual cells followed distinct patterns of cell-shape changes that were not reflected in the bulk average."

This is one of the first explicit studies to look at the variations between cells during tissue formation, and overturns the assumption that genetically identical cells behave in generally similar ways. Using a systematic approach to quantifying the changes in cell shape and movement for every single endothelial cell over time, the Columbia Engineering team found unexpected hidden patterns in behavior. In addition to discovering that most cells behave differently from the average, the team also observed that groups of cells behaved in similar fashions, and that some of these clusters of behavior resulted in distinct structural roles in the final blood-vessel network.

The origins of the variations in behavior are not known right now. Sia notes that "one possibility is simply random noise or naturally occurring fluctuations, which have been shown by other researchers to be important in producing biologically significant variations in gene expression and other subcellular processes. It's also possible there are subtle local variations in the extracellular environment that we're not aware of yet."

Sia says an application of this work is to exploit his technique to identify new drugs that modify angiogenesis. "A lot of drugs that either help or hinder blood-vessel formation have unknown mechanisms. This technique can potentially unravel some of those mechanisms, and help identify compounds that modulate specific aspects of how blood vessels form." In addition, knowledge of how individual cells behave will help in high-precision tissue engineering, an ongoing field of research in Sia's lab. "Knowledge of how individual cells or groups of cells behave enhances our understanding of how native tissues self-organize," he says. "This could ultimately enable more precise approaches for engineering complex multicellular tissues."

Sia was also named in 2010 by NASA as one of the ten innovators in human health and sustainability. In 2008, he received a CAREER award from the National Science Foundation that included a $400,000 grant to support his other research specialty in three-dimensional tissue engineering. A recipient of the Walter H. Coulter Early Career Award in 2008, Sia participated in the National Academy of Engineering's U.S. Frontiers of Engineering symposium for the nation's brightest young engineers in 2007.

His research is focused on developing new high-resolution tools to control the extracellular environments around cells, in order to study how they interact to form human tissues and organs. His lab uses techniques from a number of different fields, including biochemistry, molecular biology, microfabrication, microfluidics, materials chemistry, and cell and tissue biology.

Sia earned his B.Sc. in biochemistry from the University of Alberta, and his Ph.D. in biophysics from Harvard University, where he also a postdoctoral fellow in chemistry and chemical biology.

This study has been supported by funding from the National Institutes of Health (National Heart, Lung, and Blood Institute) and the National Science Foundation.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>