Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color Plays Musical Chairs in the Brain

05.10.2009
Color is normally thought of as a fundamental attribute of an object: a red Corvette, a blue lake, a pink flamingo. Yet despite this popular notion, new research suggests that our perception of color is malleable, and relies heavily on biological processes of the eye and brain.

The brain’s neural mechanisms keep straight which color belongs to what object, so one doesn’t mistakenly see a blue flamingo in a pink lake. But what happens when a color loses the object to which it is linked? Research at the University of Chicago has demonstrated, for the first time, that instead of disappearing along with the lost object, the color latches onto a region of some other object in view – a finding that reveals a new basic property of sight.

The research shows that the brain processes the shape of an object and its color in two separate pathways and, though the object’s shape and color normally are linked, the neural representation of the color can survive alone. When that happens, the brain establishes a new link that binds the color to another visible shape.

“Color is in the brain. It is constructed, just as the meanings of words are constructed. Without the neural processes of the brain, we wouldn’t be able to understand colors of objects any more than we could understand words of a language we hear but don’t know,” said Steven Shevell, a University of Chicago psychologist who specializes on color and vision.

Shevell’s findings are reported in a paper, “Color-Binding Errors During Rivalrous Suppression of Form,” in the current issue of Psychological Science. Wook Hong, who received his Ph.D. at UChicago and is now a post-doctoral fellow at Vanderbilt University, joined Shevell in writing the paper and conducting the research.

Their work expands the understanding of how the brain is able to integrate the multiple features of an object, such as shape, color, location and velocity, into a unified whole.

“An aspect of human vision that we normally don’t appreciate is that different features of an object, including color and shape, can be represented in different parts of the brain,” said Shevell, the Eliakim Hastings Moore Distinguished Service Professor in Psychology and Ophthalmology & Visual Science.

If a person sees a basketball coming, it is perceived as having a particular color, shape and velocity. “The knitting together, or what can be called ‘neural gluing,’ of all those different features so we see a unified object is a complex function done by the brain. Our research focused on how the brain does that,” Shevell explained.

To study how the brain represents the color of objects, the researchers used a technique called binocular rivalry. The technique presents a different image to each eye and thus pits signals from the right eye against signals from the left.

“The brain has difficulty integrating the two eyes’ incompatible signals. When the signals from the two eyes are different enough, the brain resolves the conflicting information by suppressing the information from one of the eyes,” Shevell said. “We exploited this feature of the brain with a method that caused the shape from one eye to be suppressed but not its color.”

The researchers first showed subjects vertically oriented green stripes in the left eye and a horizontally oriented set of red stripes in the right eye. “The brain cannot fuse them in a way that makes sense. So the brain sees only horizontal or vertical,” Shevell said. For their study, the researchers developed a new form of the technique that allowed the horizontal pattern to be suppressed without eliminating its red color, which continued on to the brain.

At this point, the brain has a musical chairs problem. Both the red and green colors reach consciousness but with only the one vertical pattern—one object but two colors. The surprising result was that the “disembodied red, which originated from the unseen horizontal pattern in one eye, glued itself to parts of the consciously seen vertical pattern from the other eye. That proves the idea of neural binding or neural gluing, where the color is connected to the object in an active neural process,” Shevell said.

“To us it seems automatic,” Shevell added. “Every basketball has a color. Every shirt has a color, but the brain must link each object’s color to its shape.”

The research is funded by the National Institutes of Health.

William Harms | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>