Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color Plays Musical Chairs in the Brain

05.10.2009
Color is normally thought of as a fundamental attribute of an object: a red Corvette, a blue lake, a pink flamingo. Yet despite this popular notion, new research suggests that our perception of color is malleable, and relies heavily on biological processes of the eye and brain.

The brain’s neural mechanisms keep straight which color belongs to what object, so one doesn’t mistakenly see a blue flamingo in a pink lake. But what happens when a color loses the object to which it is linked? Research at the University of Chicago has demonstrated, for the first time, that instead of disappearing along with the lost object, the color latches onto a region of some other object in view – a finding that reveals a new basic property of sight.

The research shows that the brain processes the shape of an object and its color in two separate pathways and, though the object’s shape and color normally are linked, the neural representation of the color can survive alone. When that happens, the brain establishes a new link that binds the color to another visible shape.

“Color is in the brain. It is constructed, just as the meanings of words are constructed. Without the neural processes of the brain, we wouldn’t be able to understand colors of objects any more than we could understand words of a language we hear but don’t know,” said Steven Shevell, a University of Chicago psychologist who specializes on color and vision.

Shevell’s findings are reported in a paper, “Color-Binding Errors During Rivalrous Suppression of Form,” in the current issue of Psychological Science. Wook Hong, who received his Ph.D. at UChicago and is now a post-doctoral fellow at Vanderbilt University, joined Shevell in writing the paper and conducting the research.

Their work expands the understanding of how the brain is able to integrate the multiple features of an object, such as shape, color, location and velocity, into a unified whole.

“An aspect of human vision that we normally don’t appreciate is that different features of an object, including color and shape, can be represented in different parts of the brain,” said Shevell, the Eliakim Hastings Moore Distinguished Service Professor in Psychology and Ophthalmology & Visual Science.

If a person sees a basketball coming, it is perceived as having a particular color, shape and velocity. “The knitting together, or what can be called ‘neural gluing,’ of all those different features so we see a unified object is a complex function done by the brain. Our research focused on how the brain does that,” Shevell explained.

To study how the brain represents the color of objects, the researchers used a technique called binocular rivalry. The technique presents a different image to each eye and thus pits signals from the right eye against signals from the left.

“The brain has difficulty integrating the two eyes’ incompatible signals. When the signals from the two eyes are different enough, the brain resolves the conflicting information by suppressing the information from one of the eyes,” Shevell said. “We exploited this feature of the brain with a method that caused the shape from one eye to be suppressed but not its color.”

The researchers first showed subjects vertically oriented green stripes in the left eye and a horizontally oriented set of red stripes in the right eye. “The brain cannot fuse them in a way that makes sense. So the brain sees only horizontal or vertical,” Shevell said. For their study, the researchers developed a new form of the technique that allowed the horizontal pattern to be suppressed without eliminating its red color, which continued on to the brain.

At this point, the brain has a musical chairs problem. Both the red and green colors reach consciousness but with only the one vertical pattern—one object but two colors. The surprising result was that the “disembodied red, which originated from the unseen horizontal pattern in one eye, glued itself to parts of the consciously seen vertical pattern from the other eye. That proves the idea of neural binding or neural gluing, where the color is connected to the object in an active neural process,” Shevell said.

“To us it seems automatic,” Shevell added. “Every basketball has a color. Every shirt has a color, but the brain must link each object’s color to its shape.”

The research is funded by the National Institutes of Health.

William Harms | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>