Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Code RED for Biodiversity

15.10.2010
While not an outright failure, a 2010 goal set by the Convention on Biological Diversity (CBD) for staunching the loss of the world’s species fell far short of expectations for “The International Year of Biodiversity.”

What does this mean for the 20 proposed 2020 goals being considered by the 10th conference of parties at the Convention on Biological Diversity in Nagoya, Japan, on Oct. 18-29, 2010?

In the article “Ecosystem Services for 2020,” published Oct. 15, 2010 in the journal Science, some of the world’s foremost biodiversity experts assembled by the Paris-based international program of biodiversity science, DIVERSITAS, offer a strategic approach to the 2020 goals—one that incorporates trade-offs, timing and complexity.

Feasible goals

“While there is still time, it is critical to design the 2020 targets and their indicators in ways that give them a reasonable chance of success,” argues ecosystem services expert Charles Perrings of Arizona State University. The DIVERSITAS team, led by Perrings, includes ASU scientist Ann Kinzig and 16 other leading biodiversity experts from the United States, Argentina, Sweden, Chile, Japan, England, France and Germany.

The team lauds the convention for increased efforts to address the most serious aspects of global change, climate and biodiversity, through pursuit of 20 “SMART” (specific, measurable, ambitious, realistic and time-bound) targets to be achieved by 2020. However, the group also argues that it is not enough for the targets to be SMART.

“The 2010 CBD goal was unrealistic,” says Perrings, a professor in ASU’s School of Life Sciences and co-director of the ecoSERVICES group in ASU’s College of Liberal Arts and Sciences.

“And while the 20 proposed goals for 2020 are more specific about where to go to reduce the rate of loss of biodiversity, there are critical oversights that need to be considered by the Nagoya conference delegates and beyond.”

For example, the 2020 target that “all people are aware of the values of biodiversity and the steps they can take to conserve and use it sustainably” seems unrealistic. In addition, a 2020 target for the sustainability of agriculture, aquaculture and forestry asserts that doing this will automatically assure conservation of biodiversity, yet scientific evidence does not support this, according to the authors. Both the extensive and the intensive growth of agriculture—expansion of the area committed to the production of crops or livestock, increased use of pesticides and herbicides—come at a cost to non-farmed species.

One issue with the 2020 targets, the authors point out, is that many of them are interdependent. Some are likely to be mutually inconsistent, meaning achieving one compromises achievement of another. Others are contingent, meaning achieving one is conditional on achievement of another. It will be important to adopt indicators that recognize the interdependence of targets.

“We are also fishing out oceans, one stock at a time. Often there are no real instruments for protection and those that do exist have no teeth. There are lots of reasons, reasonable ones, for people making private decisions that lead to biodiversity loss, but they cost us all collectively.”

The journal article points out that the proposed 2020 CBD targets also need to tap into the benefits that biodiversity provides to humanity, in addition to recognizing trade-offs between benefits.

Codes for success

The DIVERSITAS team assessed the 2020 targets and challenges to their implementation using the ecosystem services framework developed by the Millennium Ecosystem Assessment, an effort led by the United Nations in 2001-2005 to “analyze the capacity of the world’s ecosystems and assess the consequences of ecosystem change for human well-being.”

The authors’ resulting roadmap for 2020 recommends a hierarchical approach, one that is sensitive to the timing and sequence of targets. Some targets concern issues that need to be addressed before 2020 (DIVERSITAS codes urgent targets “red”), and other targets concern issues that need to be implemented in sequence (“enabling conditions” are coded “blue”). Moreover, many of the traditional conservation targets (coded “green”) involve trade-offs with red and blue targets that will play out over much longer timescales.

The 2020 targets to be negotiated at the Nagoya convention are a significant improvement over the 2010 target. They address the international community’s traditional conservation goals – to reduce the pressures on biodiversity and to safeguard ecosystems, species and genetic diversity. But they also address the underlying causes of biodiversity loss, its sustainable use, and the capacity and knowledge building that need to be done to if the targets are to be successfully implemented.

The scientists argue that while the 2020 targets could be strengthened, Nagoya could well be a turning point for the Convention on Biological Diversity. “The development of a strategic plan supported by targets, indicators and actions is a very positive step,” Perrings says.

The convention together with the the United Nations Framework Convention on Climate Change (UNFCCC), also established in 1992, represent the commitment of nations to secure global commitments to address the most serious aspects of global change: climate and biodiversity. The UNFCCC was the focus of much attention in 2009. Combined with the establishment of an Intergovernmental Science Policy Platform for Biodiversity and Ecosystem Services (IPBES), to be brought before the U.N. General Assembly later this year, Perrings and his team believe that COP10 in Nagoya, Japan, may mark the first serious attempt by the international community to deal with the second of the world’s two greatest environmental problems: biosphere change.

Participating authors:

Charles Perrings and Ann Kinzig, School of Life Sciences, Arizona State University, Tempe AZ, USA

Shahid Naeem, and Farshid Ahrestani, Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA

Daniel E. Bunker, Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA

Peter Burkill, Sir Alister Hardy Foundation for Ocean Science, Plymouth, PL12PB, UK

Graciela Canziani, Rosana Ferrati and Fernando Milano, Instituto Multidisciplinario Sobre, Ecosistemas y Desarrollo Sustentable, Universidad Nacional del Centro, Argentina

Thomas Elmqvist, The Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden

Jed Fuhrman, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

Fabian Jaksic, Centro de Estudios Avanzados en Ecologia y Biodiversidad, Pontificia Universidad Católica de Chile, Chile

Zen Kawabata, Research Institute for Humanity and Nature, Kyoto, Japan

Georgina M. Mace, Centre for Population Biology, Imperial College London, UK

Harold Mooney, Department of Biology, Stanford University, Stanford, CA, USA

Anne-Hélène Prieur Richard, DIVERSITAS, Paris, France

John Tschirhart, Department of Eco-nomics and Finance, University of Wyoming, Laramie, WY, USA

Wolfgang Weisser, Institut für Ökologie, Friedrich-Schiller-Universität, Jena 07743, Germany

Margaret Coulombe | Newswise Science News
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>