Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More code cracking

3 related studies help uncover the rules governing gene transcription

A trio of groundbreaking publications from researchers in Northwestern University's Physical Sciences-Oncology Center (PS-OC) report important methodological advances that will enable a better understanding of how gene expression is regulated, both in normal cells and in cancer cells. This knowledge could lead to the development of more effective therapeutic agents to treat cancer patients.

The three papers, published recently in the journals Nature Genetics, Nature Biotechnology and Nature, focus on nucleosomes, a basic unit of DNA packaging, and may help to uncover the rules governing gene transcription.

The late Jonathan Widom of Northwestern is senior author of the Nature paper that describes a new method for mapping nucleosomes. His longtime collaborator Eran Segal of the Weizmann Institute in Israel is senior author of two papers that build on his and Widom's earlier discovery of a "second DNA code."

"It is becoming increasingly clear that acquired mutations in the machinery that underlies the way in which DNA is packaged into chromatin are major drivers of the development of tumors in humans," said Jonathan Licht, M.D., the Northwestern PS-OC's senior investigator. Chromatin is a complex of DNA and proteins that when compacted forms chromosomes.

"The work of the PS-OC, including these new studies, has allowed the elucidation of the normal rules by which chromatin is arranged in the cell," he said. "This will help us to understand what's going wrong in cancer and how that might be remedied." Licht is the Johanna Dobe Professor and chief of the division of hematology/oncology at Northwestern's Feinberg School of Medicine and an associate director of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Six years ago, Widom and Segal reported in Nature the discovery of a second DNA code that explains the placement of nucleosomes, spool-like structures in which the DNA loops around a protein complex. (The first code is DNA's genetic code, which specifies the composition of cellular proteins.) Nucleosomes control access to the DNA. Widom and Segal found there are certain DNA sequences that favor or disfavor the location of these nucleosomes.

Widom, whose research focused on chromatin packaging and gene regulation, and Segal, a computational biologist, continued their studies on sequence preferences for nucleosome formation as part of a project funded by Northwestern's Physical Sciences-Oncology Center.

Widom directed the center until his untimely death last year and was the William Deering Professor of Molecular Biosciences in the Weinberg College of Arts and Sciences. Segal has been a member of the center since its inception in 2009.

"This new work of Jon Widom's lab, reported in Nature, adds greatly to the ability to measure the locations of nucleosomes with unprecedented accuracy, which is needed to decipher the code in the DNA as reported in our two recent papers," Segal said.

In the papers by the Segal group, one in Nature Genetics and the other in Nature Biotechnology, Segal and his colleagues developed an elegant experimental system that allows them to accurately measure the effects of DNA sequences that disfavor the formation of nucleosomes on transcriptional regulation.

The new technology makes it possible to simultaneously introduce tens of thousands of DNA regions into tens of thousands of living cells -- each region in a separate cell -- in a planned and systematic manner, and to measure the results of each such change with great precision and within a single experiment.

Using this system, the Segal group demonstrated that sequences favoring the formation of nucleosomes do indeed have a significantly negative impact on transcription. Transcription is the copying of specific sequences in the DNA into similar molecules called RNA, which are intermediaries in the flow of information between the DNA and protein production. Both of the Segal papers acknowledge the intellectual contribution of Widom to their work.

The third paper, published in Nature and reporting on work completed in the Widom laboratory after his death, describes another major methodological advance. This novel technique permits the location of nucleosomes in the genome to be mapped with much higher accuracy than was previously possible. Not only will this technique enable a much better understanding of transcriptional regulation, but it should also help scientists to understand other features of DNA biology.

Ji-Ping Wang, who directs the bioinformatics core of the PS-OC, played a major role in the development of this technique.

"This is another example of how Jon's great knowledge in biochemistry and biophysics allowed him to suggest a way to scale up an existing experimental technique into modern tools that would allow genome-wide mapping of nucleosomes," Segal said. "Jon also was closely involved in our work and provided invaluable insights and suggestions into all aspects of the research."

The Northwestern Physical Sciences-Oncology Center focuses on applying physical sciences approaches to understanding the fundamental principles underlying aberrant gene expression in cancer. Funded by the National Cancer Institute, the center is a collaboration of the Chemistry of Life Processes Institute and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>