Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cockroach brains could be rich stores of new antibiotics

07.09.2010
Cockroaches could be more of a health benefit than a health hazard according to scientists from The University of Nottingham.

Experts from the School of Veterinary Medicine and Science have discovered powerful antibiotic properties in the brains of cockroaches and locusts which could lead to novel treatments for multi-drug resistant bacterial infections. They found that the tissues of the brain and nervous system of the insects were able to kill more than 90 per cent of MRSA and pathogenic Escherichia coli, without harming human cells.

Simon Lee, a postgraduate researcher, is presenting their work at the Society for General Microbiology’s autumn meeting which is being held at The University of Nottingham between the 6 and 9 September 2010. The research has identified up to nine different molecules in the insect tissues that were toxic to bacteria.

Simon Lee said: “We hope that these molecules could eventually be developed into treatments for E. coli and MRSA infections that are increasingly resistant to current drugs. These new antibiotics could potentially provide alternatives to currently available drugs that may be effective but have serious and unwanted side effects.”

Dr Naveed Khan, an Associate Professor of Molecular Microbiology who is supervising Simon Lee’s work said: “Superbugs such as MRSA have developed resistance against the chemotherapeutic artillery that we throw at them. They have shown the ability to cause untreatable infections, and have become a major threat in our fight against bacterial diseases. Thus, there is a continuous need to find additional sources of novel antimicrobials to confront this menace.”

Using state-of-the-art analytical tools, Dr Khan and his team are studying the specific properties of the antibacterial molecules. Research is currently underway to test the potency of these molecules against a variety of emerging superbugs such as Acinetobacter, Pseudomonas and Burkholderia.

Mr Lee explained why it is unsurprising that insects secrete their own antimicrobials. He said: “Insects often live in unsanitary and unhygienic environments where they encounter many different types of bacteria. It is therefore logical that they have developed ways of protecting themselves against micro-organisms.”

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk
http://www.nottingham.ac.uk/News/pressreleases/2010/September/CockroachAntibiotics.aspx

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>