Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clogging up the plumbing

19.07.2010
Vascular development in plants is controlled by a newly identified gene regulator that can block the formation of water-transporting vessels

Every vascular plant contains an extensive network of xylem and phloem, specialized tissues that respectively transport water and nutrients throughout the plant body. Untangling the processes that determine how these two types of vasculature develop has proven challenging, but a team led by Taku Demura of the RIKEN Biomass Engineering Program in Wako has now uncovered an important novel regulator of xylem formation1.

Several years ago, Demura and colleagues identified a family of seven VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors; one of these, VND7, appears to activate a number of genes related to xylem development2. “The data suggest that VND7 likely functions as the principal regulator of vessel differentiation,” Demura says. However, the activity of this factor appears to depend closely on the proteins with which it partners, and his team has subsequently focused on identifying these co-regulators.

In their most recent screen, the researchers identified VNI2, a novel transcriptional regulator that physically interacts with VND7 and whose expression appears to correlate closely with vascular development in both root and stem tissue. However, although both VND7 and VNI2 are categorized as ‘NAC domain’ proteins, VNI2 exhibited one surprising difference from other members of its family. “It is known that most of the NAC transcription factors are transcriptional activators,” says Demura. “In contrast, VNI2 is a transcriptional repressor.”

Indeed, VNI2 appears to act primarily as an inhibitor of vascular development, and plants overexpressing this factor exhibited profound defects in xylem formation. These abnormalities were highly similar to those observed in plants overexpressing modified, inhibitory variants of VND7, further supporting a partnership between these two factors. In parallel, Demura and colleagues determined that VNI2 specifically represses several genes known to be induced by VND7 in the course of xylem differentiation.

These findings indicate that the VNI2–VND7 complex contributes directly to the timing and localization of vascular development, although this is most likely not the sole purpose of this repressor. “Our paper shows that VNI2 is expressed in various other cell types in addition to xylem vessels, and we want to know its other functions,” says Demura. Accordingly, their initial protein–protein interaction data suggest that VNI2 might pair with other, non-xylem-specific NAC proteins, whose functional characteristics remain enigmatic.

“We still need to study the VND genes [more closely],” says Demura, “for a better understanding of xylem cell differentiation. Since xylem cells are a major source of lignocellulosic biomass, such knowledge could be applied to potential renewable materials and biofuels.”

The corresponding author for this highlight is based at the Cellulose Production Research Team, RIKEN Biomass Engineering Program

Journal information

1. Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H. & Demura, T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22, 1249–1263 (2010).

2. Kubo, M., Udagawa, M., Nishikubo, N. Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H. & Demura, T. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development 19, 1855–1860 (2005).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6336
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>