Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Climate Change affects Microbial Life below the Seafloor

22.10.2013
Traces of past microbial life in sediments off the coast of Peru document how the microbial ecosystem under the seafloor has responded to climate change over hundreds of thousands of years.

For more a decade scientists at the Max Planck Institute for Marine Microbiology and their colleagues at MARUM and the University of Aarhus have investigated microbial life from this habitat.


The samples were taken during the Ocean Drilling Program (ODP) in 2002. (www-odp.tamu.edu).
NASA


The international drilling vessel JOIDES Resolution
iodp.org

This “Deep Biosphere”, reaching several hundred meters below the seafloor, is exclusively inhabited by microbes and is generally considered as stable. Nevertheless, only little is known about how this system developed over millennia and how this microbial life influences the cycling of carbon in the oceans.

In a new study appearing in the Proceedings of the National Academy of Sciences (PNAS) Dr. Sergio Contreras, a palaeoceanographer, and his Bremen colleagues use a careful examination of drill-cores from the continental shelf of Peru to actually show how surprisingly dynamic this deeply buried ecosystem can be.

Below the sea floor, consortia of two different domains of microorganisms (archaea and bacteria) tap the energy of methane, which they oxidize by using sulfate. This process is known as the anaerobic oxidation of methane (AOM) and has been intensively studied by Bremen researchers. Methane, also produced by archaea, emerges from deeper layers of the sediment, while sulfate diffuses slowly from the water column into the sediment.

Both reactants meet at the so-called methane oxidation front. Only at this front are concentrations of sulfate and methane high enough for the microbial turnover to take place, and here the AOM process leaves behind mineral and biological fossil signatures. For example, archaeol, a constituent of the archaeal cell membrane, is an extremely stable molecule that is preserved over thousands to millions of years. Minerals such as barite (barium sulfate) and dolomite (magnesium calcium carbonate) also precipitate at this methane oxidation front due to microbial activity.

Migration of the methane oxidation front
In order to trace the migration of the methane oxidation front back over the last half million years, Dr. Contreras and his colleagues measured the barite, dolomite and archaeol content at high resolution in drill cores from the coast off Peru. These up to 200-meter-long cores from the Peruvian continental shelf were obtained during an expedition with the scientific drill ship JOIDES Resolution as part of the Ocean Drilling Program in 2002. To their surprise, Contreras and his colleagues detected a layer that was strongly enriched in archaeol, barite and dolomite, located 20 meter above the present-day methane oxidation front. They estimated that this layer was formed during the last interglacial time period about 125000 years ago and that the methane front must have rapidly migrated downwards during the last glacial period. „Our data demonstrate how fast the microbial communities respond to changes in the oceanographic conditions, at least on a geological time scale“, explains the biogeochemist Dr. Tim Ferdelman.
Exploring the past with mathematical modeling
To reconstruct the rapid shifts in the depth of the methane front, Contreras and his colleagues used a mathematical model for simulating the deep microbial activity and its dependence on climate change. The simulations clearly show that the amount of organic detritus raining out from the highly productive Peruvian surface waters is the crucial factor determining the relative position of the methane front. The amount of carbon deposited on the Peruvian shelf strongly depends on the global climate; thus the methane oxidation front moved upwards during warm periods due to intensified organic carbon deposition, and migrated downwards with the onset of cold, glacial periods due to low organic carbon deposition. ”We can incorporate these new findings into models for the development of past or future Deep Biospheres“, concludes Dr. Bo Liu who developed the model for this study.

The geologist Dr. Patrick Meister highlights the implications of this finding: „The detected traces provide the key to the history of the sub-seafloor microbial activity and its dynamic interaction with climate and oceanography for of the past 100,000 years. If we look further back in time, such as over the past million years” speculates Meister, “we might find even more drastic changes of microbial activity in the deep biosphere“. Such ongoing research efforts between geologists and microbiologists, along with access to deep sediment samples within the framework of the Integrated Ocean Drilling Program (IODP), should continue to provide insight into the interactions between climate and the deep biosphere.

Further Informationen

Dr. Patrick Meister, +49 421 2028832, pmeister@mpi-bremen.de
Dr. Timothy Ferdelman, +49 421 2028632, tferdelm@mpi-bremen.de
Press officer
Dr. Manfred Schloesser, +49 421 2028704, mschloes@mpi-bremen.de
Original publication
Cyclic 100 ka (glacial-interglacial) migration of sub-seafloor redox zonation on the Peruvian shelf. Sergio Contreras, Patrick Meister, Bo Liu, Xavier Prieto-Mollar, Kai-Uwe Hinrichs, Arzhang Khalili, Timothy G. Ferdelman, Marcel M. M. Kuypers, and Bo Barker Jørgensen. Proceedings of the National Academy of Sciences, 2013.

doi/10.1073/pnas.1305981110

Institutes and Universities
Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Celsiusstrasse 1, D-28359 Bremen, Germany

Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, D-28359 Bremen, Germany

Department of Bioscience, Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark.

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>