Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up cellular trash

25.05.2010
Inducing cells to destroy a misfolded protein alleviates the symptoms of Huntington's disease in mice

Huntington’s disease (HD) is a progressive neurodegenerative disease characterized primarily by involuntary movements. Inherited mutations in the huntingtin gene cause a stretch of glutamine residues in its associated protein, huntingtin, to increase in length, so that the mutant protein misfolds and accumulates within neurons. Neurologists believe that failure to clear aggregates of this misfolded protein is an underlying mechanism involved in the onset of HD.

Nerve cells can now be induced to destroy mutant huntingtin protein and reduce aggregate formation, according to the results of a study led by Nobuyuki Nukina of the RIKEN Brain Science Institute in Wako1. The researchers suggest that their approach could be used to effectively treat HD.

Nukina and colleagues used genetic engineering to construct a fusion protein consisting of two copies of polyglutamine binding peptide 1, which is known to bind mutant huntingtin and suppress its aggregation, and the binding regions of heat shock cognate protein 70 (HSC70), which is a ‘chaperone’ protein that targets the mutant huntingtin for destruction.

The researchers found that their construct inhibited the aggregation of mutant huntingtin in cultured cells by inducing a process called chaperone-mediated autophagy, which does not normally break down the misfolded proteins. They also observed that the fusion molecule bound to the mutant huntingtin, forming complexes with HSC70 that were recognized as abnormal and sent to a structure called the lysosome for degradation.

The construct was also effective in clearing aggregates of several other misfolded proteins, including ataxin1, which causes a neurodegenerative disease called spinocerebellar ataxia.

The researchers tested their construct in two strains of mice with HD symptoms. They injected viral vectors containing the construct into the striatum, a brain region that is involved in the control of movement and degenerates in HD patients.

When they examined the animals’ brains four weeks later, they found the construct widely distributed throughout the striatum in both mouse strains. Importantly, the fusion protein had significantly inhibited huntingtin aggregation compared to control mice. As well as reducing the number of aggregates, the construct reduced the average size of the remaining aggregates. The treatment also alleviated HD symptoms in the animals: their movements improved in a behavioral task, they lost less weight, and their survival rate increased.

“Genetic therapy for Huntington's is currently not possible because of the difficulties involved in delivering genes to the brain,” says Nukina, “so we would like to develop or find a compound that can bind to expanded glutamine tracts and HSC70.”

The corresponding author for this highlight is based at the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute

Journal information

1. Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M., Miyazaki, H., Matsumoto, G., Kino, Y., Nagai, Y. & Nukina, N. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nature Biotechnology 28, 256–263 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6268
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>