Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up cellular trash

25.05.2010
Inducing cells to destroy a misfolded protein alleviates the symptoms of Huntington's disease in mice

Huntington’s disease (HD) is a progressive neurodegenerative disease characterized primarily by involuntary movements. Inherited mutations in the huntingtin gene cause a stretch of glutamine residues in its associated protein, huntingtin, to increase in length, so that the mutant protein misfolds and accumulates within neurons. Neurologists believe that failure to clear aggregates of this misfolded protein is an underlying mechanism involved in the onset of HD.

Nerve cells can now be induced to destroy mutant huntingtin protein and reduce aggregate formation, according to the results of a study led by Nobuyuki Nukina of the RIKEN Brain Science Institute in Wako1. The researchers suggest that their approach could be used to effectively treat HD.

Nukina and colleagues used genetic engineering to construct a fusion protein consisting of two copies of polyglutamine binding peptide 1, which is known to bind mutant huntingtin and suppress its aggregation, and the binding regions of heat shock cognate protein 70 (HSC70), which is a ‘chaperone’ protein that targets the mutant huntingtin for destruction.

The researchers found that their construct inhibited the aggregation of mutant huntingtin in cultured cells by inducing a process called chaperone-mediated autophagy, which does not normally break down the misfolded proteins. They also observed that the fusion molecule bound to the mutant huntingtin, forming complexes with HSC70 that were recognized as abnormal and sent to a structure called the lysosome for degradation.

The construct was also effective in clearing aggregates of several other misfolded proteins, including ataxin1, which causes a neurodegenerative disease called spinocerebellar ataxia.

The researchers tested their construct in two strains of mice with HD symptoms. They injected viral vectors containing the construct into the striatum, a brain region that is involved in the control of movement and degenerates in HD patients.

When they examined the animals’ brains four weeks later, they found the construct widely distributed throughout the striatum in both mouse strains. Importantly, the fusion protein had significantly inhibited huntingtin aggregation compared to control mice. As well as reducing the number of aggregates, the construct reduced the average size of the remaining aggregates. The treatment also alleviated HD symptoms in the animals: their movements improved in a behavioral task, they lost less weight, and their survival rate increased.

“Genetic therapy for Huntington's is currently not possible because of the difficulties involved in delivering genes to the brain,” says Nukina, “so we would like to develop or find a compound that can bind to expanded glutamine tracts and HSC70.”

The corresponding author for this highlight is based at the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute

Journal information

1. Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M., Miyazaki, H., Matsumoto, G., Kino, Y., Nagai, Y. & Nukina, N. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nature Biotechnology 28, 256–263 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6268
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>