Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up cellular trash

25.05.2010
Inducing cells to destroy a misfolded protein alleviates the symptoms of Huntington's disease in mice

Huntington’s disease (HD) is a progressive neurodegenerative disease characterized primarily by involuntary movements. Inherited mutations in the huntingtin gene cause a stretch of glutamine residues in its associated protein, huntingtin, to increase in length, so that the mutant protein misfolds and accumulates within neurons. Neurologists believe that failure to clear aggregates of this misfolded protein is an underlying mechanism involved in the onset of HD.

Nerve cells can now be induced to destroy mutant huntingtin protein and reduce aggregate formation, according to the results of a study led by Nobuyuki Nukina of the RIKEN Brain Science Institute in Wako1. The researchers suggest that their approach could be used to effectively treat HD.

Nukina and colleagues used genetic engineering to construct a fusion protein consisting of two copies of polyglutamine binding peptide 1, which is known to bind mutant huntingtin and suppress its aggregation, and the binding regions of heat shock cognate protein 70 (HSC70), which is a ‘chaperone’ protein that targets the mutant huntingtin for destruction.

The researchers found that their construct inhibited the aggregation of mutant huntingtin in cultured cells by inducing a process called chaperone-mediated autophagy, which does not normally break down the misfolded proteins. They also observed that the fusion molecule bound to the mutant huntingtin, forming complexes with HSC70 that were recognized as abnormal and sent to a structure called the lysosome for degradation.

The construct was also effective in clearing aggregates of several other misfolded proteins, including ataxin1, which causes a neurodegenerative disease called spinocerebellar ataxia.

The researchers tested their construct in two strains of mice with HD symptoms. They injected viral vectors containing the construct into the striatum, a brain region that is involved in the control of movement and degenerates in HD patients.

When they examined the animals’ brains four weeks later, they found the construct widely distributed throughout the striatum in both mouse strains. Importantly, the fusion protein had significantly inhibited huntingtin aggregation compared to control mice. As well as reducing the number of aggregates, the construct reduced the average size of the remaining aggregates. The treatment also alleviated HD symptoms in the animals: their movements improved in a behavioral task, they lost less weight, and their survival rate increased.

“Genetic therapy for Huntington's is currently not possible because of the difficulties involved in delivering genes to the brain,” says Nukina, “so we would like to develop or find a compound that can bind to expanded glutamine tracts and HSC70.”

The corresponding author for this highlight is based at the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute

Journal information

1. Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M., Miyazaki, H., Matsumoto, G., Kino, Y., Nagai, Y. & Nukina, N. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nature Biotechnology 28, 256–263 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6268
http://www.researchsea.com

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>