Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How chromosomes meet in the dark - Switch that turns on X chromosome matchmaking

30.12.2008
A research group lead by scientists at the University of Warwick has discovered the trigger that pulls together X chromosomes in female cells at a crucial stage of embryo development.

Their discovery could also provide new insights into how other similar chromosomes spontaneously recognize each other and are bound together at key parts of analogous cell processes. This is an important mechanism as the binding togetgher of too many of too few of a particular chromosome can cause a number of medical conditions such as Down’s Syndrome or Turner’s Syndrome.

In our cells most genes are expressed from both types of each chromosome linked gene, but the most notable exception to this rule are X-linked genes in female mammals. During embryo development, in a step necessary to survival, one of the X chromosomes is silenced in each female cell to ensure that the levels of X-derived products are equalized in XX females and XY males, via a process known as X-Chromosome Inactivation (XCI). Recent discoveries have revealed that for that stage in the process to happen the X chromosomes have to quickly pair off (or colocalize) in a way that allows each part of those pairs of X chromosomes to be very close together and be aligned in a particular way. Failure to achieve this close physical colocalization of the two X chromosomes will lead to XCI failure and cell death.

Chromosome colocalization events are common in cells. A prominent example being mesiosis: for sexual reproduction to succeed in producing viable cells all of the homologous chromosomes in the process have to, almost simultaneously, bind together in pairs.

Yet until now the mechanisms of chromosome self-recognition and colocalization remain deeply mysterious. Researchers have had no clear understanding of how the X chromosomes actually suddenly pair off so quickly and consistently allowing this to happen.

Dr Mario Nicodemi, from the Department of Physics at the University of Warwick and Dr Antonio Scialdone from the University of Naples have uncovered exactly how this process is switched on and published their findings in PLOS in a paper entitled Mechanics and Dynamics of X-Chromosome Pairing at X Inactivation.

University of Warwick physicist Dr Mario Nicodemi, has recently published research on just how one X chromosome is able to silence another as part of the XCI process. However for that stage in the process to happen the X chromosomes have to quickly pair off (colocalization) in a way that allows each part of those pairs of X chromosomes to be very close together and aligned in a particular way.

In this latest paper the Warwick and Naples researchers looked at a particular “DNA specific binding molecule” including a protein known as CTCF that seemed to play a role in pairing off of X chromosomes. In the past when other researchers had mutated CTCF, or deleted the sections of DNA that the CTCF bound to, they found that it disrupted the pairing up or colocalization of the X Chromosomes. Clearly then CTCF had a role to play in the process but it was not obvious how it did so with the precise timing and speed required.

Obviously sheer chance meant that CTCFs would randomly encounter and bind to an X chromosome. There was an even smaller probability then that such a pairing would then encounter another X chromosome and bind to it as well – the CTCF would effectively then force colocalization by this unlikely double chance encounter, forming a chemical bridge between the two chromosomes. However such a gradual chance based occurrence did not fit with the speed and efficiency of how the actual process of colocalization of the X chromosomes really happened during XCI.

The Warwick lead research team created a model of the interaction between X chromosomes and CTCF proteins using polymer physics. They looked at models of chains of polymer beads that had almost the same number of chemical binding sites on their beads as the number of known CTCF binding sites in the key part of X chromosomes.

Their simulations using this system found that in that a key tipping point was reached if the amount of CTCF present in the system reached a critical threshold - a concentration of around 0.1 mg per millilitre or less. Below that point very little happened. Random bindings did occur but not often enough or quickly enough to build the sort of momentum necessary to produce the total and sudden of X Chromosomes colocalization required for successful X inactivation.

However once the threshold concentration is reached it produces a tipping point or thermodynamic switch. That particular concentration of CTCF was suddenly enough to ensure that the CTCF proteins could encounter and bind in quick succession to two X chromosomes forming a chemical bridge between them and almost instantly bringing about colocalization of the X chromosomes and making embryo development successful.

The researchers believe that this newly discovered “thermodynamic switch” not only explains how X chromosomes pair up during meiosis but also apply to a range of other cell processes that involve the recognition and pairing of DNA sequences including other homologous chromosomes. This is of particular importance, e.g., at meiosis, as the binding of togetgher of too many or too few of a particular chromosome can cause a number of medical conditions.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>