Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Chromosome Ends Influence Cellular Aging

Heidelberg researchers study the function of telomeres in cellular aging processes

By studying processes that occur at the ends of chromosomes, a team of Heidelberg researchers has unravelled an important mechanism towards a better understanding of cellular aging.

The scientists focused on the length of the chromosome ends, the so-called telomeres, which can be experimentally manipulated. Their research, which was conducted at the Center for Molecular Biology of Heidelberg University (ZMBH), allows for new approaches in the development of therapies for tissue loss and organ failure associated with senescence (cellular aging). The research results may also be significant for cancer treatment. They were recently published in the journal “Nature Structural & Molecular Biology”.

Each cell contains a set of chromosomes in which the vast majority of our genetic information is stored in the form of DNA. This information must be protected to ensure the proper functioning of the cell. To achieve this, the very ends of the chromosomes, the telomeres, play an important role in protecting the chromosomal DNA from being degraded. “We can imagine that telomeres are analogous to the plastic caps at the ends of our shoelaces. Without them, the ends of the laces get frayed and eventually the entire shoelace does not function properly,” explains Dr. Brian Luke. His research group at the ZMBH is primarily focused on understanding how telomeres protect DNA.

It is well known in the scientific community that telomeres shorten every time a cell divides and eventually become so short that they can no longer protect the chromosomes. The unprotected chromosome ends send signals that stop the cell from dividing further, a state referred to as “senescence”. Senescent cells occur more frequently as we age, which can contribute to tissue loss and organ failure. “In certain diseases, patients already have very short telomeres at birth and as a result they experience severe tissue loss and organ dysfunction at an early age”, says the Heidelberg scientist.

The research group headed by Dr. Luke has now discovered that turning transcription on or off at telomeres can have drastic effects on their length. Transcription is the process of making an RNA molecule from DNA. It has only recently been shown to occur at telomeres, but the functional significance of this discovery has remained a mystery. Molecular biologists Bettina Balk and André Maicher were now able to show that the RNA itself is the key regulator that drives telomere length changes, especially when it sticks to telomeric DNA to make a so-called “RNA-DNA hybrid molecule”.

“We experimentally changed the amount of RNA-DNA hybrids at the chromosome ends. We can thus either accelerate or diminish the rate of cellular senescence directly by affecting telomere length,” explains Bettina Balk. According to André Maicher, this could be a first step towards telomere-based therapies for tissue loss or organ failure. With respect to diseases, it remains to be determined whether altering transcription rates at telomeres does indeed improve health status. This approach is also significant for cancer cells, which do not senesce and are thus considered immortal. “Transcription-based telomere length control may therefore also be applicable to cancer treatment,” Dr. Luke emphasizes.

The junior research group of Dr. Luke is a member of the Network Aging Research (NAR) at Heidelberg University and receives funding by the Baden-Württemberg Stiftung. Further funding comes from the German Research Foundation in the framework of Heidelberg University’s Collaborative Research Centre “Cellular Surveillance and Damage Response” (SFB 1036).

Original publication:
B. Balk, A. Maicher, M. Dees, J. Klermund, S. Luke-Glaser, K. Bender & B. Luke: Telomeric RNA-DNA hybrids affect telomere length dynamics and senescence; Nat. Struct. Mol. Biol. (8 September 2013), DOI: 10.1038/nsmb.2662
Dr. Brian Luke
Center for Molecular Biology of Heidelberg University
Phone +49 6221 54-6897,
Communications and Marketing
Press Office, phone +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Make way for the mini flying machines

21.03.2018 | Life Sciences

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>