Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chromosomal Variations Found in Early Passage Female Human Embryonic Stem Cell Lines

Human embryonic stem cells hold great promise for studying and treating disease and for the practice of regenerative medicine. However, more must be learned to ensure the cells that may one day be transplanted into humans are safe.

In one of many safety-related studies going on worldwide, scientists at the UCLA Broad Stem Cell Research Center have uncovered that variations in X chromosome inactivation take place in very early passages of female human embryonic stem cells lines, information that will play an important role in ensuring the safety of cells grown for therapeutic use and a discovery that also may have implications in the development of cancer.

Chromosomal and genetic variations found in human embryonic stem cells lines have been attributed, in large part, to the various culture conditions in which they’re grown, said Tamar Dvash, first author of the study and a postdoctoral fellow at UCLA.

However, the work by the Broad Stem Cell Research Center scientists reveals that very early in their growth, female human embryonic stem cells already show variation in the inactivation of the X chromosome.

“It suggests that culture conditions and methods in the derivation of human embryonic stem cells could be further improved to achieve a uniform pattern of X chromosome inactivation,” said Guoping Fan, an associate professor of human genetics and senior author of the study.

The study is published June 25, 2010 in the early online edition of the journal PLoS ONE, a publication of the Public Library of Science.

All female cells have two X chromosomes and in early development, one X chromosome is permanently inactivated. The X chromosome inactivation ensures that females, like males, have one functional copy of the X chromosome in each body cell and that the cells develop normally. If the second X chromosome is not inactivated, the result could be disease development, including some cancers in which two active X chromosomes can be found in the malignant cells, Dvash said.

Previously, what scientists knew about human embryonic development was gleaned from studying mouse embryos. However, the advent of human embryonic stem cell research has allowed researchers to closely study early human development. Dvash, Fan and other scientists, including collaborator Neta Lavon of Cedars-Sinai Medical Center, were examining the process of inactivation of the X chromosome when they made their observation.

The creation of a stem cell line includes many steps. The donated, frozen blastocysts are thawed and the inner cell mass – the 20 to 50 cells that are fully pluripotent in the blastocyst - is placed in culture with cells that support its growth. After a time, a small piece of the developing stem cell colony, or group of cells, is cut away and placed into a culture dish to further expand, a process called passaging.

The cells studied by Dvash and Fan were passaged only five to ten times instead of the usual more than 20 times, meaning the culture in which they were grown should have had less influence on any variation found in the cells. However, even at the first five passages, the resulting cells showed variations in X chromosome inactivation, meaning some cells had inactivated one X chromosome and some had not.

“People are looking at these cells as having great potential for transplantation and possible cures for diseases,” Dvash said. “What this study proves is that we need to monitor X chromosome inactivation closely in cells being considered for therapeutic use. We need to make sure they’re undergoing normal inactivation to ensure they will be stable when they begin to differentiate.”

Going forward, the scientists will also examine induced pluripotent stem cells, adult stem cells that have been reprogrammed to have all the qualities of embryonic stem cells, which can become any cell in the body. They will study skin cells taken from females, which would already have undergone inactivation of one X chromosome because they are already differentiated. The cells will be programmed into embryonic-like cells with two active X chromosomes so they can more closely study the process of inactivation.

“We want to know how does it happen and when,” Dvash said.

This study was funded by two grants from the California Institute of Regenerative Medicine, the state’s stem cell research agency.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at To learn more about the center, visit our web site at

Kim Irwin | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>