Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chromosomal Variations Found in Early Passage Female Human Embryonic Stem Cell Lines

Human embryonic stem cells hold great promise for studying and treating disease and for the practice of regenerative medicine. However, more must be learned to ensure the cells that may one day be transplanted into humans are safe.

In one of many safety-related studies going on worldwide, scientists at the UCLA Broad Stem Cell Research Center have uncovered that variations in X chromosome inactivation take place in very early passages of female human embryonic stem cells lines, information that will play an important role in ensuring the safety of cells grown for therapeutic use and a discovery that also may have implications in the development of cancer.

Chromosomal and genetic variations found in human embryonic stem cells lines have been attributed, in large part, to the various culture conditions in which they’re grown, said Tamar Dvash, first author of the study and a postdoctoral fellow at UCLA.

However, the work by the Broad Stem Cell Research Center scientists reveals that very early in their growth, female human embryonic stem cells already show variation in the inactivation of the X chromosome.

“It suggests that culture conditions and methods in the derivation of human embryonic stem cells could be further improved to achieve a uniform pattern of X chromosome inactivation,” said Guoping Fan, an associate professor of human genetics and senior author of the study.

The study is published June 25, 2010 in the early online edition of the journal PLoS ONE, a publication of the Public Library of Science.

All female cells have two X chromosomes and in early development, one X chromosome is permanently inactivated. The X chromosome inactivation ensures that females, like males, have one functional copy of the X chromosome in each body cell and that the cells develop normally. If the second X chromosome is not inactivated, the result could be disease development, including some cancers in which two active X chromosomes can be found in the malignant cells, Dvash said.

Previously, what scientists knew about human embryonic development was gleaned from studying mouse embryos. However, the advent of human embryonic stem cell research has allowed researchers to closely study early human development. Dvash, Fan and other scientists, including collaborator Neta Lavon of Cedars-Sinai Medical Center, were examining the process of inactivation of the X chromosome when they made their observation.

The creation of a stem cell line includes many steps. The donated, frozen blastocysts are thawed and the inner cell mass – the 20 to 50 cells that are fully pluripotent in the blastocyst - is placed in culture with cells that support its growth. After a time, a small piece of the developing stem cell colony, or group of cells, is cut away and placed into a culture dish to further expand, a process called passaging.

The cells studied by Dvash and Fan were passaged only five to ten times instead of the usual more than 20 times, meaning the culture in which they were grown should have had less influence on any variation found in the cells. However, even at the first five passages, the resulting cells showed variations in X chromosome inactivation, meaning some cells had inactivated one X chromosome and some had not.

“People are looking at these cells as having great potential for transplantation and possible cures for diseases,” Dvash said. “What this study proves is that we need to monitor X chromosome inactivation closely in cells being considered for therapeutic use. We need to make sure they’re undergoing normal inactivation to ensure they will be stable when they begin to differentiate.”

Going forward, the scientists will also examine induced pluripotent stem cells, adult stem cells that have been reprogrammed to have all the qualities of embryonic stem cells, which can become any cell in the body. They will study skin cells taken from females, which would already have undergone inactivation of one X chromosome because they are already differentiated. The cells will be programmed into embryonic-like cells with two active X chromosomes so they can more closely study the process of inactivation.

“We want to know how does it happen and when,” Dvash said.

This study was funded by two grants from the California Institute of Regenerative Medicine, the state’s stem cell research agency.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at To learn more about the center, visit our web site at

Kim Irwin | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>