Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholera discovery could revolutionize antibiotic delivery

22.10.2012
Three Simon Fraser University scientists are among six researchers who’ve made a discovery that could help revolutionize antibiotic treatment of deadly bacteria.

Lisa Craig, Christopher Ford and Subramaniapillai Kolappan, SFU researchers in molecular biology and biochemistry, have explained how Vibrio cholerae became a deadly pathogen thousands of years ago.

V. cholerae causes the diarrheal disease cholera, which is endemic in many developing countries and can emerge in regions devastated by war and natural disasters. An outbreak following the 2010 earthquake in Haiti has killed at least 7,500 people.

Two genes within V. cholerae’s genome make it toxic and deadly. The bacterium acquired these genes when a bacterial virus or bacteriophage called CTX-phi infected it.

The SFU researchers and their colleagues at the University of Oslo and Harvard Medical School propose that a Trojan horse-like mechanism within V. cholerae enabled CTX-phi to invade it.

The CTX-phi latches onto a long, hair-like pilus filament floating on the surface of V. cholerae. The filament then retracts, pulling the toxin-gene-carrying CTX-phi inside the bacterium where it binds to TolA, a protein in the bacterial wall.

The process transforms V. cholerae into a deadly human pathogen.

The Journal of Biological Chemistry has just published a paper written by the researchers describing the atomic structures of the CTX-phi protein pIII alone and bound to V. cholera TolA.

The authors recommend that pilus filaments be explored further as a transport mechanism to deliver antibiotics into a bacterium.

“We’d be exploiting the pilus retraction mechanism to introduce antibiotics directly into a cell, bypassing its outer membrane barrier,” explains Craig. The SFU associate professor is an expert on the role that pili play in bacterial infections.

“We do have antibiotics for V. cholerae, but these antibiotics also kill beneficial bacteria in the gut. The idea of using pili as a Trojan horse for antibiotic delivery is new and allows us to specifically and effectively target a given bacterial pathogen.”

Craig says her team’s discovery of V. cholerae’s retractable pili is made all the more exciting by the simplicity of its workings. “We know that other deadly bacteria have retractable pili but it’ll be much easier to isolate how the mechanism can be used to uptake antibiotics in Vibrio cholerae.”

Craig says using pili as an antibiotic delivery mechanism to treat Pseudomonas aeruginosa, a deadly bacterial respiratory infection that hits mainly people with Cystic Fibrosis, could save many lives.

Christopher Ford is a research associate in Craig’s lab. Subramaniapillai Kolappan, one of Craig’s master’s students, recently graduated from SFU.

Simon Fraser University is Canada's top-ranked comprehensive university and one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 120,000 alumni in 130 countries.

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities.

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>