Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholera discovery could revolutionize antibiotic delivery

22.10.2012
Three Simon Fraser University scientists are among six researchers who’ve made a discovery that could help revolutionize antibiotic treatment of deadly bacteria.

Lisa Craig, Christopher Ford and Subramaniapillai Kolappan, SFU researchers in molecular biology and biochemistry, have explained how Vibrio cholerae became a deadly pathogen thousands of years ago.

V. cholerae causes the diarrheal disease cholera, which is endemic in many developing countries and can emerge in regions devastated by war and natural disasters. An outbreak following the 2010 earthquake in Haiti has killed at least 7,500 people.

Two genes within V. cholerae’s genome make it toxic and deadly. The bacterium acquired these genes when a bacterial virus or bacteriophage called CTX-phi infected it.

The SFU researchers and their colleagues at the University of Oslo and Harvard Medical School propose that a Trojan horse-like mechanism within V. cholerae enabled CTX-phi to invade it.

The CTX-phi latches onto a long, hair-like pilus filament floating on the surface of V. cholerae. The filament then retracts, pulling the toxin-gene-carrying CTX-phi inside the bacterium where it binds to TolA, a protein in the bacterial wall.

The process transforms V. cholerae into a deadly human pathogen.

The Journal of Biological Chemistry has just published a paper written by the researchers describing the atomic structures of the CTX-phi protein pIII alone and bound to V. cholera TolA.

The authors recommend that pilus filaments be explored further as a transport mechanism to deliver antibiotics into a bacterium.

“We’d be exploiting the pilus retraction mechanism to introduce antibiotics directly into a cell, bypassing its outer membrane barrier,” explains Craig. The SFU associate professor is an expert on the role that pili play in bacterial infections.

“We do have antibiotics for V. cholerae, but these antibiotics also kill beneficial bacteria in the gut. The idea of using pili as a Trojan horse for antibiotic delivery is new and allows us to specifically and effectively target a given bacterial pathogen.”

Craig says her team’s discovery of V. cholerae’s retractable pili is made all the more exciting by the simplicity of its workings. “We know that other deadly bacteria have retractable pili but it’ll be much easier to isolate how the mechanism can be used to uptake antibiotics in Vibrio cholerae.”

Craig says using pili as an antibiotic delivery mechanism to treat Pseudomonas aeruginosa, a deadly bacterial respiratory infection that hits mainly people with Cystic Fibrosis, could save many lives.

Christopher Ford is a research associate in Craig’s lab. Subramaniapillai Kolappan, one of Craig’s master’s students, recently graduated from SFU.

Simon Fraser University is Canada's top-ranked comprehensive university and one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 120,000 alumni in 130 countries.

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities.

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>