Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlamydia protein has an odd structure, scientists find

12.06.2013
Research could lead to new ways to combat this sexually transmitted disease

A protein secreted by the chlamydia bug has a very unusual structure, according to scientists in the School of Medicine at The University of Texas Health Science Center San Antonio. The discovery of the protein's shape could lead to novel strategies for diagnosing and treating chlamydia, a sexually transmitted disease that infects an estimated 2.8 million people in the U.S. each year.

The protein, Pgp3, is secreted by Chlamydia trachomatis, the bacterium that causes chlamydia. Pgp3's shape is very distinguishable — sort of like an Eiffel Tower of proteins. "From a structural standpoint, the protein is very odd indeed," said X-ray crystallographer P. John Hart, Ph.D., the Ewing Halsell President's Council Distinguished Chair in the Department of Biochemistry at the San Antonio medical school. "This long and slender molecule contains a fusion of structural motifs that resemble those typically found in viral and not bacterial proteins." Dr. Hart is co-lead author of the research, which is described in the Journal of Biological Chemistry (JBC).

The Pgp3 protein is a chlamydial virulence factor that is hypothesized to enhance the bug's ability to initially infect its human host and then evade host defenses. "Although my lab has worked on this protein for many years and gained a great deal of knowledge on it, we still don't know what roles it may play in chlamydial pathogenesis (disease development)," said co-lead author Guangming Zhong, M.D., Ph.D., professor of microbiology at the Health Science Center. "With the structural information uncovered in this paper, we can now test many hypotheses."

This is the second chlamydial virulence factor that Dr. Zhong's laboratory has identified; the first was a protein called CPAF. Structural studies have played an important role in understanding CPAF's functions in chlamydial infections, Dr. Zhong said.

Chlamydia's toll

According to the U.S. Centers for Disease Control and Prevention (CDC), more than 1.4 million new cases of chlamydia were reported in 2011 across the 50 states and the District of Columbia. But the CDC says as many cases go unreported because most people with chlamydia have no symptoms and do not seek testing. If left untreated, chlamydia can permanently damage a woman's reproductive system. This can lead to ectopic pregnancy, pelvic inflammatory disease and infertility.

The disease burden of chlamydia worldwide is magnitudes greater, with new cases numbering in the dozens of millions per year. The World Health Organization estimates that 499 million new cases occur annually of four curable sexually transmitted diseases — chlamydia, syphilis, gonorrhea and trichomoniasis. This estimate is for cases in adults aged 15-49.

Chlamydia infection induces inflammatory pathology in humans, and Pgp3 may contribute to the pathology by activating inflammation via one of its structural features uncovered in the crystal structure, said Dr. Zhong, who has worked with Dr. Hart on the Pgp3 project for nearly four years.

ACKNOWLEDGMENTS: This work was supported by Robert A. Welch Foundation grant AQ-1399 (to PJH), and National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases grants AI47997 & AI64537 (to GZ). Portions of this work were supported by the Army Research Office of the U.S. Department of Defense under contract W911NF-11-1-0136 to The University of Texas at San Antonio/The University of Texas Health Science Center at San Antonio Center for Excellence in Genomics Research. A portion of the work took place at the Northeastern Collaborative Access Team beam lines of the Advanced Photon Source at Argonne National Laboratory, supported by award RR-15301 from the National Center for Research Resources at the NIH. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract W-31-109-ENG-38. Merck supported studies on the immunogenicity of Pgp3 in humans (to GZ). This work was also supported in part by the Cancer Center Support Grant of the Cancer Therapy & Research Center (CTRC) at the UT Health Science Center San Antonio (National Cancer Institute grant P30CA054174). Support for the X-ray Crystallography Core Laboratory by the UT Health Science Center San Antonio Office of the Vice President for Research is gratefully acknowledged.

Structure of the Chlamydia trachomatis Immunodominant Antigen Pgp3

Ahmad Galaleldeen 1,4,#, Alexander B. Taylor 1,3,#, Ding Chen 2, Jonathan P. Schuermann 5, Stephen P. Holloway 1, Shuping Hou 2, Siqi Gong 2, Guangming Zhong 2 and P. John Hart 1,3,6

1 Department of Biochemistry, 2 Department of Microbiology & Immunology, and 3 X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, TX 78229; 4 St. Mary's University, Department of Biological Sciences, One Camino Santa Maria, San Antonio, TX 78228; 5 Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; 6 Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio TX 78229

#These authors contributed equally to this work.

On the Web, Facebook and Twitter

For current news from the UT Health Science Center San Antonio, please visit our news release website, like us on Facebook or follow us on Twitter.

About the UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving National Institutes of Health funding. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>