Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese scientists discover marker indicating the developmental potential of stem cells

19.04.2010
Finding is expected to steer future work on therapies down the most efficient and promising paths

Researchers in China are reporting that they have found a way to determine which somatic cells -- or differentiated body cells -- that have been reprogrammed into a primordial, embryonic-like state are the most viable for therapeutic applications.

In a paper published online last week by the Journal of Biological Chemistry, two collaborating teams from institutes at the Chinese Academy of Sciences point to a marker they found in induced-pluripotent stem cells, or iPS cells, taken from mice. That marker is a cluster of small RNA whose expression appears strictly correlated with levels of pluripotency, or "stemness." (The more pluripotent, the more likely a stem cell will develop into the desired tissue, organ or being.)

"We identified a genomic region encoding several genes and a large cluster of microRNAs in the mouse genome whose expression is high in fully pluripotent embryonic stem cells and iPS cells but significantly reduced in partially pluripotent iPS cells, indicating that the Dlk1-Dio3 region may serve as a marker," said Qi Zhou, a researcher at the CAS Institute of Zoology and co-author of the paper. "No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotent levels."

After the creation of the first iPS cells in Japan in 2006, Zhou and others set out to determine whether the reprogrammed adult cells are versatile enough to generate an entire mammalian body, as embryonic stem cells can.

Then, last summer, Zhou announced that his team had reprogrammed somatic cells of mice, injected them into embryos and created 27 live offspring, which clearly demonstrated that iPS cells can, like embryonic stem cells, produce healthy adults. Though lauded as a huge step forward, they also found not all iPS cells were perfect: Many of the iPS cell lines used did not produce mice, and some of the mice that were produced had abnormalities.

"The success rate of obtaining iPS cells with full pluripotency was still extremely low, which significantly hindered the application of iPS cells in therapeutics and other aspects," Zhou said.

Believing that there might be some intrinsic gene expression difference between the lines of iPS cells with varying levels of pluripotency that could be identified at early culture stages, so that less viable lines could be abandoned and more viable lines focused on, Zhou teamed up with bioinformatics specialist Xiu-Jie Wang, who works at the Chinese academy's Institute of Genetics and Developmental Biology.

Together, their groups profiled the small RNA expression patterns of ES and iPS cell lines from different genetic backgrounds and with different pluripotent levels using Solexa technology.

"There are nearly 50 miRNAs encoded in this region, and those expressed miRNAs all exhibited consistent and significant expression differences between stem-cell lines with different pluripotency levels," Wang said. "With this discovery, iPS cells with different pluripotency can be distinguished in their early phases, which will, thus, significantly improve the production of full pluripotent iPS cells and promote their application in disease therapy," Wang said.

As stem cells can be applied in the treatment of many diseases related to tissue replacement or organ implantation, Zhou said, if the team's findings also are true for humans, "it will cause a revolution in stem-cell research and the application of it in the very near future."

The team's work is supported by China's National High-Technology Research and Development Program, Ministry of Science and Technology and National Natural Science Foundation. Their Journal of Biological Chemistry paper went online April 9 and will appear in a forthcoming print edition.

Other co-authors included Lei Liu, Guan-Zheng Luo, Wei Yang, Xiaoyang Zhao, Qinyuan Zheng, Zhuo Lv, Wei Li, Hua-Jun Wu and Liu Wang. Their paper can be found at http://www.jbc.org/content/early/2010/04/13/jbc.M110.131995.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>