Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese scientists discover marker indicating the developmental potential of stem cells

19.04.2010
Finding is expected to steer future work on therapies down the most efficient and promising paths

Researchers in China are reporting that they have found a way to determine which somatic cells -- or differentiated body cells -- that have been reprogrammed into a primordial, embryonic-like state are the most viable for therapeutic applications.

In a paper published online last week by the Journal of Biological Chemistry, two collaborating teams from institutes at the Chinese Academy of Sciences point to a marker they found in induced-pluripotent stem cells, or iPS cells, taken from mice. That marker is a cluster of small RNA whose expression appears strictly correlated with levels of pluripotency, or "stemness." (The more pluripotent, the more likely a stem cell will develop into the desired tissue, organ or being.)

"We identified a genomic region encoding several genes and a large cluster of microRNAs in the mouse genome whose expression is high in fully pluripotent embryonic stem cells and iPS cells but significantly reduced in partially pluripotent iPS cells, indicating that the Dlk1-Dio3 region may serve as a marker," said Qi Zhou, a researcher at the CAS Institute of Zoology and co-author of the paper. "No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotent levels."

After the creation of the first iPS cells in Japan in 2006, Zhou and others set out to determine whether the reprogrammed adult cells are versatile enough to generate an entire mammalian body, as embryonic stem cells can.

Then, last summer, Zhou announced that his team had reprogrammed somatic cells of mice, injected them into embryos and created 27 live offspring, which clearly demonstrated that iPS cells can, like embryonic stem cells, produce healthy adults. Though lauded as a huge step forward, they also found not all iPS cells were perfect: Many of the iPS cell lines used did not produce mice, and some of the mice that were produced had abnormalities.

"The success rate of obtaining iPS cells with full pluripotency was still extremely low, which significantly hindered the application of iPS cells in therapeutics and other aspects," Zhou said.

Believing that there might be some intrinsic gene expression difference between the lines of iPS cells with varying levels of pluripotency that could be identified at early culture stages, so that less viable lines could be abandoned and more viable lines focused on, Zhou teamed up with bioinformatics specialist Xiu-Jie Wang, who works at the Chinese academy's Institute of Genetics and Developmental Biology.

Together, their groups profiled the small RNA expression patterns of ES and iPS cell lines from different genetic backgrounds and with different pluripotent levels using Solexa technology.

"There are nearly 50 miRNAs encoded in this region, and those expressed miRNAs all exhibited consistent and significant expression differences between stem-cell lines with different pluripotency levels," Wang said. "With this discovery, iPS cells with different pluripotency can be distinguished in their early phases, which will, thus, significantly improve the production of full pluripotent iPS cells and promote their application in disease therapy," Wang said.

As stem cells can be applied in the treatment of many diseases related to tissue replacement or organ implantation, Zhou said, if the team's findings also are true for humans, "it will cause a revolution in stem-cell research and the application of it in the very near future."

The team's work is supported by China's National High-Technology Research and Development Program, Ministry of Science and Technology and National Natural Science Foundation. Their Journal of Biological Chemistry paper went online April 9 and will appear in a forthcoming print edition.

Other co-authors included Lei Liu, Guan-Zheng Luo, Wei Yang, Xiaoyang Zhao, Qinyuan Zheng, Zhuo Lv, Wei Li, Hua-Jun Wu and Liu Wang. Their paper can be found at http://www.jbc.org/content/early/2010/04/13/jbc.M110.131995.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>