Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese scientists discover marker indicating the developmental potential of stem cells

19.04.2010
Finding is expected to steer future work on therapies down the most efficient and promising paths

Researchers in China are reporting that they have found a way to determine which somatic cells -- or differentiated body cells -- that have been reprogrammed into a primordial, embryonic-like state are the most viable for therapeutic applications.

In a paper published online last week by the Journal of Biological Chemistry, two collaborating teams from institutes at the Chinese Academy of Sciences point to a marker they found in induced-pluripotent stem cells, or iPS cells, taken from mice. That marker is a cluster of small RNA whose expression appears strictly correlated with levels of pluripotency, or "stemness." (The more pluripotent, the more likely a stem cell will develop into the desired tissue, organ or being.)

"We identified a genomic region encoding several genes and a large cluster of microRNAs in the mouse genome whose expression is high in fully pluripotent embryonic stem cells and iPS cells but significantly reduced in partially pluripotent iPS cells, indicating that the Dlk1-Dio3 region may serve as a marker," said Qi Zhou, a researcher at the CAS Institute of Zoology and co-author of the paper. "No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotent levels."

After the creation of the first iPS cells in Japan in 2006, Zhou and others set out to determine whether the reprogrammed adult cells are versatile enough to generate an entire mammalian body, as embryonic stem cells can.

Then, last summer, Zhou announced that his team had reprogrammed somatic cells of mice, injected them into embryos and created 27 live offspring, which clearly demonstrated that iPS cells can, like embryonic stem cells, produce healthy adults. Though lauded as a huge step forward, they also found not all iPS cells were perfect: Many of the iPS cell lines used did not produce mice, and some of the mice that were produced had abnormalities.

"The success rate of obtaining iPS cells with full pluripotency was still extremely low, which significantly hindered the application of iPS cells in therapeutics and other aspects," Zhou said.

Believing that there might be some intrinsic gene expression difference between the lines of iPS cells with varying levels of pluripotency that could be identified at early culture stages, so that less viable lines could be abandoned and more viable lines focused on, Zhou teamed up with bioinformatics specialist Xiu-Jie Wang, who works at the Chinese academy's Institute of Genetics and Developmental Biology.

Together, their groups profiled the small RNA expression patterns of ES and iPS cell lines from different genetic backgrounds and with different pluripotent levels using Solexa technology.

"There are nearly 50 miRNAs encoded in this region, and those expressed miRNAs all exhibited consistent and significant expression differences between stem-cell lines with different pluripotency levels," Wang said. "With this discovery, iPS cells with different pluripotency can be distinguished in their early phases, which will, thus, significantly improve the production of full pluripotent iPS cells and promote their application in disease therapy," Wang said.

As stem cells can be applied in the treatment of many diseases related to tissue replacement or organ implantation, Zhou said, if the team's findings also are true for humans, "it will cause a revolution in stem-cell research and the application of it in the very near future."

The team's work is supported by China's National High-Technology Research and Development Program, Ministry of Science and Technology and National Natural Science Foundation. Their Journal of Biological Chemistry paper went online April 9 and will appear in a forthcoming print edition.

Other co-authors included Lei Liu, Guan-Zheng Luo, Wei Yang, Xiaoyang Zhao, Qinyuan Zheng, Zhuo Lv, Wei Li, Hua-Jun Wu and Liu Wang. Their paper can be found at http://www.jbc.org/content/early/2010/04/13/jbc.M110.131995.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>