Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese-German collaboration yields new species of Large Blue butterfly

10.06.2010
Chinese and German scientists have found a new butterfly species in the south of China. It is the first known species of the family of Large Blue butterflies which lives in mountain forests.

The new species from northwestern Yunnan was discovered by Prof. Min Wang of the South China Agricultural University, Guangzhou, China and Dr. Josef Settele of the Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.

The species was described in the open access journal ZooKeys (Volume 48, pp. 21-28; doi: 10.3897/zookeys.48.415) and was named Phengaris xiushani. With the name the scientist Dr. Xiushan Li is honored, who has rendered outstanding service to the cooperation of the butterfly researchers in Germany and China.

From the 15th to the 25th of June further workshops will take place within the German-Chinese year of Science and education, which can be witnessed in a Web-Blog at http://www.blog.dcjwb.net/.

The large blues belong to the most intensively studied group of butterflies in Eurasia, which is probably due to their “obscure” biology and ecology: On the one hand they depend on specific food plants, which in itself is not yet that surprising. But they also require particular ant species as many of the known species feed on ants during most of their life as caterpillars. These specialized habitat requirements have made them vulnerable to climate change and habitat alteration.

The discovery of the new species now was quite surprising, although contrary to the European species (which are well known under their scientific name Maculinea) the Chinese species, which include both the Maculinea and the Phengaris blues, are not so well studied and monitored due to lack of financial and personnel resources. Consequently, nothing is known on the ecology of this new species, with the exception that it lives in undisturbed forested mountains, where it was discovered – which makes it different from the other Large Blues which over the entire range of distribution live in grasslands.

The discovery was made in the course of a Chinese-German workshop on butterfly conservation held in Guangzhou in December 2009, funded within the German-Chinese year of Science by BMBF (German Ministry for Science and Education; http://www.deutsch-chinesisches-jahr-2009-2010.de/) through the project LepiPub (http://www.blog.dcjwb.net/) and South China Agricultural University (http://www.scau.edu.cn/). This study was partly supported by the National Nature Science Foundation of China (30570211, 40971037) and the FP 6 BiodivERsA project CLIMIT (Climate change impacts on insects and their mitigation; http://www.climit-project.net ; http://www.ufz.de/index.php?en=18357).

Reference specimens (the so-called types) are kept in the Insect Collection of the South China Agricultural University, Guangzhou, China, and the “Senckenberg Museum für Tierkunde” in Dresden, Germany.

The name given to the new species refers: (a) to the beautiful mountain on the slopes of which it was found (Xiu-Shan in Chinese means “beautiful mountain”), and (b) more importantly we dedicate this species to Dr. Xiushan Li who worked at UFZ for some years, who brought the two authors of this description together, and who has committed much of his life to research on ecology and conservation of butterflies – with his most recent publication in 2010 (Li et al., 2010).

Tilo Arnhold | Helmholtz-Centre
Further information:
http://www.ufz.de/index.php?en=19718

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>