Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Childhood trauma leaves its mark on the brain

EPFL scientists find evidence that psychological wounds inflicted when young leave lasting biological traces—and a predisposition toward violence later in life

It is well known that violent adults often have a history of childhood psychological trauma. Some of these individuals exhibit very real, physical alterations in a part of the brain called the orbitofrontal cortex. Yet a direct link between such early trauma and neurological changes has been difficult to find, until now.

Peripuberty stressed rats show increased activation in the amygdala (involved in emotional processing) and blunted activation in the orbitofrontal cortex (involved in social decision-making).

Credit: EPFL

Publishing in the January 15 edition of Translational Psychiatry, EPFL Professor Carmen Sandi and team demonstrate for the first time a correlation between psychological trauma in pre-adolescent rats and neurological changes similar to those found in violent humans.

"This research shows that people exposed to trauma in childhood don't only suffer psychologically, but their brain also gets altered," explains Sandi, Head of EPFL's Laboratory of Behavioral Genetics, Director of the Brain Mind Institute, and a member of the National Centers for Competence in Research SYNAPSY. "This adds an additional dimension to the consequences of abuse, and obviously has scientific, therapeutic and social implications."

The researchers were able to unravel the biological foundations of violence using a cohort of male rats exposed to psychologically stressful situations when young. After observing that these experiences led to aggressive behavior when the rats reached adulthood, they examined what was happening in the animals' brains to see if the traumatic period had left a lasting mark.

"In a challenging social situation, the orbitofrontal cortex of a healthy individual is activated in order to inhibit aggressive impulses and to maintain normal interactions," explains Sandi. "But in the rats we studied, we noticed that there was very little activation of the orbitofrontal cortex. This, in turn, reduces their ability to moderate their negative impulses. This reduced activation is accompanied by the overactivation of the amygdala, a region of the brain that's involved in emotional reactions." Other researchers who have studied the brains of violent human individuals have observed the same deficit in orbitofrontal activation and the same corresponding reduced inhibition of aggressive impulses. "It's remarkable; we didn't expect to find this level of similarity," says Sandi.

The scientists also measured changes in the expression of certain genes in the brain. They focused on genes known to be involved in aggressive behavior for which there are polymorphisms (genetic variants) that predispose carriers to an aggressive attitude, and they looked at whether the psychological stress experienced by the rats caused a modification in the expression of these genes. "We found that the level of MAOA gene expression increased in the prefrontal cortex," says Sandi. This alteration was linked to an epigenetic change; in other words, the traumatic experience ended up causing a long-term modification of this gene's expression.

Finally, the researchers tested the efficacy of an MAOA gene inhibitor, in this case an anti-depressant, to see if it could reverse the rise in aggression induced by juvenile stress, which it did. Going forward, the team will explore treatments for reversing physical changes in the brain, and above all, attempt to shed light on whether some people are more vulnerable to being effected by trauma based on their genetic makeup.

"This research could also reveal the possible ability of antidepressants—an ability that's increasingly being suspected—to renew cerebral plasticity," says Sandi.

More Info

The NCCR "SYNAPSY – Synaptic Bases of Mental Diseases" aims to discover the neurobiological mechanisms of mental and cognitive disorders, since one of the major challenges in psychiatry is to achieve a better understanding of how these illnesses originate. It focuses on the interface between preclinical research and clinical development, combining neuroscience with psychiatry. It is hosted at EPFL and funded by the Swiss national science foundation.

Researcher Contact

Carmen Sandi, EPFL researcher, +41 693 95 35 or

Anne-Muriel Brouet | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>