Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy Plus Synthetic Compound Provides Potent Anti-Tumor Effect in Pancreatic Cancers

24.03.2010
Human pancreatic cancer cells dramatically regress when treated with chemotherapy in combination with a synthetic compound that mimics the action of a naturally occurring “death-promoting” protein found in cells, researchers at UT Southwestern Medical Center have found.

The research, conducted in mice, appears in today’s issue of Cancer Research and could lead to more effective therapies for pancreatic and possibly other cancers, the researchers said.

“This compound enhanced the efficacy of chemotherapy and improved survival in multiple animal models of pancreatic cancer,” said Dr. Rolf Brekken, associate professor of surgery and pharmacology and the study’s senior author. “We now have multiple lines of evidence in animals showing that this combination is having a potent effect on pancreatic cancer, which is a devastating disease.”

In this study, Dr. Brekken and his team transplanted human pancreatic tumors into mice, then allowed the tumors to grow to a significant size. They then administered a synthetic compound called JP1201 in combination with gemcitabine, a chemotherapeutic drug that is considered the standard of care for patients with pancreatic cancer. They found that the drug combination caused regression of the tumors.

“There was a 50 percent regression in tumor size during a two-week treatment of the mice,” Dr. Brekken said. “We also looked at survival groups of the animals, which is often depressing in human therapeutic studies for pancreatic cancer because virtually nothing works. We found not only significant decrease in tumor size, but meaningful prolongation of life with the drug combination.”

The drug combination was also effective in an aggressive model of spontaneous pancreatic cancer in mice.

The compound JP1201 was created in 2004 by UT Southwestern researchers to mimic the action of a protein called Smac. The researchers discovered Smac in 2000 and found that this protein plays a key role in the normal self-destruction process present in every cell.

Cell death, or apoptosis, is activated when a cell needs to be terminated, such as when a cell is defective or is no longer needed for normal growth and development. In cancer cells, this self-destruct mechanism is faulty and lead to breaks in the cell-death cascade of events. The synthetic Smac, or Smac mimetic, developed at UT Southwestern inhibits these breaks, allowing the cell to die.

“In essence, we’re inhibiting an inhibitor,” Dr. Brekken said. “And we’re allowing the apoptotic cascade to kick off, resulting in the death of cancer cells.”

UT Southwestern researchers are using Smac mimetics in breast and lung cancer research, as well. Dr. Brekken said the next step is to develop a compound based on JP1201 that can be tested in humans in clinical trials.

Other UT Southwestern researchers involved in the study included lead author Dr. Sean Dineen, surgery resident; Dr. Christina Roland, surgery resident; Rachel Greer, student research assistant in the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research; Juliet Carbon, senior research associate in surgery and in the Hamon Center; Jason Toombs, research assistant in surgery and in the Hamon Center; Dr. Puja Gupta, a pediatric hematology/oncology fellow; Dr. Noelle Williams, associate professor of biochemistry; and Dr. John Minna, director of the W.A. “Tex” and Deborah Moncrief Jr. Center for Cancer Genetics and of the Hamon Center.

The research was supported by Susan G. Komen for the Cure and Joyant Pharmaceuticals, a Dallas-based company and UT Southwestern spinoff that is developing medical applications of Smac-mimetic compounds.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services in cancer at UT Southwestern.

Connie Piloto | Newswise Science News
Further information:
http://www.utsouthwestern.org/cancercenter

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>