Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How chemotherapy becomes more effective

Researchers from the University of Zurich have found a cellular brake that protects cancer cells from chemotherapy – and they demonstrate which medication can be used to render it inoperative. Their study published in the journal “Natural Structural and Molecular Biology” provides the molecular basis for promising therapeutic advances.

Although many cancer drugs have already been in use for decades, their mode of action is still unknown. The new research results now challenge a mechanism of action that was previously proposed for a group of drugs and supported with experiments: the Topoisomerase I-inhibitor Camptothecin (Top1 inhibitor for short) and its derivatives used in chemotherapy, Topotecan and Irinotecan.

Problem: emergency cellular brake restricts effectiveness

For a long time, the toxicity of the top1-inhibitors was attributed to discontinuities in the cancer cells’ DNA that inevitably caused breaks in the chromosomes during the duplication of the DNA. The team headed by Professor Massimo Lopes at the University of Zurich’s Institute of Molecular Cancer Research has now identified a mechanism with which cancer cells protect themselves against damage caused by Top1 inhibitions: Using electron microscopy, the researchers were able to demonstrate that Top1 inhibitors can cause the replication forks that develop during the duplication of the DNA to be restructured. “Reversed” replication forks, or “chicken-foot” structures as they are also known, are formed. This remodeling of the replication forks provides the cancer cells with the time they need to repair the lesion in the DNA and thus prevent disparately cytotoxic chromosomal breakage.
“Until now, the assumed mechanism of action of Top1 inhibitors was comparable to a train hurtling towards an obstacle without brakes that inevitably ends up derailing,” explains Massimo Lopes, commenting on the results. “What we have now discovered is the emergency brake, which the cells activate themselves to protect themselves from the inhibitor.” Arnab Ray-Chaudhuri, who made a considerable contribution to the study, draws the following conclusion: “Thanks to the discovery of this mechanism, we now understand why chemotherapy does not always work as expected with these drugs.”

The existence of such DNA structures was hypothesized many years ago, but it has only just been confirmed in human cells by Lopes’s group. These chicken-foot structures are even surprisingly common with clinically relevant doses of Top1 inhibitors.
Solution: render emergency brake inoperative

The new observations reveal an interesting coincidence: In pulling the emergency brake, a family of enzymes that recently attracted a great deal of interest as a potential target for new cancer therapies is involved in the restructuring: the poly-ADP-ribose polymerases, or PARPS for short. After all, PARP inhibitors increase the sensitivity of cancer cells to different drugs that harm the DNA, including Top1 inhibitors. The new study reveals why: PARP inhibition hinders the reversal of the replication forks and increases the number of chromosomal breaks caused by Top1 inhibitors. Massimo Lopes and his team thus provide a clear molecular basis for the clinical observations described and pave the way for promising therapeutic advances.
Massimo Lopes’s team is currently investigating whether the same or a similar mechanism is activated by other classes of chemotherapeutics and which cellular factors are involved in this molecular “emergency brake”. The aim is to identify tumors in which this mechanism is not active or inhibit the mechanism pharmacologically to improve the efficacy of chemotherapy.


A. Ray Chaudhuri, Y. Hashimoto, R. Herrador, K.J. Neelsen, D. Fachinetti, R. Bermejo, A. Cocito, V. Costanzo and M. Lopes. Toposiomerase I poisoning results in PARP-mediated replication fork reversal. Nature Structural and Molecular Biology. 4 March, 2012. Doi: 10.1038/nsmb.2258

Beat Müller | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>