Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists offer new hydrogen purification method

17.02.2009
President Barack Obama's pursuit of energy independence promises to accelerate research and development for alternative energy sources -- solar, wind and geothermal power, biofuels, hydrogen and biomass, to name a few.

For the hydrogen economy, one of the roadblocks to success is the hydrogen itself. Hydrogen needs to be purified before it can be used as fuel for fuel cells, but current methods are not very clean or efficient.

Northwestern University chemist Mercouri G. Kanatzidis, together with postdoctoral research associate Gerasimos S. Armatas, has developed a class of new porous materials, structured like honeycomb, that is very effective at separating hydrogen from complex gas mixtures. The materials exhibit the best selectivity in separating hydrogen from carbon dioxide and methane, to the best of the researchers' knowledge.

The results, which offer a new way to separate gases not available before, will be published online Feb. 15 by the journal Nature Materials. The materials are a new family of germanium-rich chalcogenides.

"A more selective process means fewer cycles to produce pure hydrogen, increasing efficiency," said Kanatzidis, Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and the paper's senior author. "Our materials could be used very effectively as membranes for gas separation. We have demonstrated their superior performance."

Current methods of producing hydrogen first yield hydrogen combined with carbon dioxide or hydrogen combined with carbon dioxide and methane. The technology currently used for the next step -- removing the hydrogen from such mixtures -- separates the gas molecules based on their size, which is difficult to do.

Kanatzidis and Armatas offer a better solution. Their new materials do not rely on size for separation but instead on polarization -- the interaction of the gas molecules with the walls of the material as the molecules move through the membrane. This is the basis of the new separation method.

Tests of one form of the family of materials -- this one composed of the heavy elements germanium, lead and tellurium -- showed it to be approximately four times more selective at separating hydrogen from carbon dioxide than conventional methods, which are made of lighter elements, such as silicon, oxygen and carbon.

"We are taking advantage of what we call 'soft' atoms, which form the membrane's walls," said Kanatzidis. "These soft-wall atoms like to interact with other soft molecules passing by, slowing them down as they pass through the membrane. Hydrogen, the smallest element, is a 'hard' molecule. It zips right through while softer molecules, like carbon dioxide and methane take more time."

Kanatzidis and Armatas tested their membrane on a complex mixture of four gases. Hydrogen passed through first, followed in order by carbon monoxide, methane and carbon dioxide. As the smallest and hardest molecule, hydrogen interacted the least with the membrane, and carbon dioxide, as the softest molecule of the four, interacted the most.

Another advantage is that the process takes place at what Kanatzidis calls a "convenient temperature range" -- between zero degrees Celsius and room temperature.

Small-molecule diffusion through porous materials is a nanoscopic phenomenon, say the researchers. All the pores in the hexagonal honeycomb structure are ordered and parallel, with each hole approximately two to three nanometers wide. The gas molecules are all at least half a nanometer wide.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>