Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists concoct new agents to easily study critical cell proteins

01.11.2010
They are the portals to the cell, gateways through which critical signals and chemicals are exchanged between living cells and their environments.

But these gateways -- proteins that span the cell membrane and connect the world outside the cell to its vital inner workings – remain, for the most part, black boxes with little known about their structures and how they work.

They are of intense interest to scientists as they are the targets on which many drugs act, but are notoriously difficult to study because extracting these proteins intact from cell membranes is tricky.

Now, however, a team of scientists from the University of Wisconsin-Madison and Stanford University has devised a technology to more easily obtain membrane proteins for study. Writing this week (Oct. 31) in the journal Nature Methods, the group reports the development of a class of agents capable of extracting complex membrane proteins without distorting their shape, a key to understanding how they work.

"The proteins are embedded in the membrane to control what gets into the cell and what gets out," explains Samuel Gellman, a UW-Madison professor of chemistry and a senior author of the paper along with Brian Kobilka of Stanford and Bernadette Byrne of Imperial College London. "If we want to understand life at the molecular level, we need to understand the properties and functions of these membrane proteins."

The catch with membrane proteins and unleashing their potential, however, is getting insight into their physical properties, says Gellman.

Like other kinds of proteins, membrane proteins exhibit a complex pattern of folding, and determining the three-dimensional shapes they assume in the membrane provides essential insight into how they do business.

Proteins are workhorse molecules in any organism, and myriad proteins are known. Structures have been solved for many thousands of so-called "soluble" proteins, but only a couple of hundred membrane protein structures are known, Gellman notes. This contrast is important because roughly one-third of the proteins encoded in the human genome appear to be membrane proteins.

To effectively study a protein, scientists must have access to it. A primary obstacle has been simply getting proteins out of the membrane while maintaining their functional shapes. To that end, Gellman's group has developed a family of new chemical agents, known as amphiphiles, that are easily prepared, customizable to specific proteins and cheap.

"These amphiphiles are very simple," says Gellman. "That's one of their charms. The other is that they can be tuned to pull out many different kinds of proteins."

The hope, according to Gellman, is that the new technology will facilitate research at the biomedical frontier.

The development of the amphiphiles was conducted in close collaboration with groups like Kobilka's, which specializes in techniques that help resolve the three-dimensional structures of proteins found in cell membranes.

The lead author of the new study is Pil Seok Chae, a postdoctoral fellow in Gellman's lab. The work was supported primarily by the U.S National Institutes of Health.

-- Terry Devitt, 608-262-8282, trdevitt@wisc.edu

Samuel Gellman | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>