Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemistry Researchers Create New Tool to Visualize Bloodstains

Chemists at the University of South Carolina have developed a camera with the ability to see the invisible – and more.

The new technology, called multimode imaging in the thermal infrared, could eventually be used in crime-scene investigations, since it can capture blood stains that the human eye can’t see.

Drs. Stephen Morgan and Michael Myrick, professors in the department of chemistry and biochemistry in USC’s College of Arts and Sciences, published their work in a series of three reports in the American Chemical Society’s Analytical Chemistry, a semi-monthly journal. Graduate students Heather Brooke, Megan Baranowski and Jessica McCutcheon were also authors of the study.

“Detecting blood is like the holy grail of forensics,” Morgan said. “When you are able to detect blood at a crime scene, you know something bad has happened.”

Blood detection is important at a crime scene because blood can be typed and can provide DNA, and pattern analysis of blood spatter may be able to help determine the sequence of events, he said.

He said the luminol test, which is now widely used to detect blood stains and other body fluids at crime scenes, has several disadvantages. Luminol is potentially toxic; it can dilute blood solutions below levels where DNA can be retrieved; it can cause blood spatter patterns to smear, and it can produce false positive results.

Using the camera means that the surface doesn’t have to be changed in any way while it is being examined. “With this, we view the scene without touching it,” Morgan said.

Morgan and Myrick built and tested a camera that captures hundreds of images in a few seconds, while illuminating its subjects with pulses of invisible infrared light waves. Some of these photos are taken through special filters, which block out particular wavelengths, allowing certain chemical components to stand out from their surroundings. One of the chemicals it can identify is blood, even when it is diluted to as little as one part blood in 100 parts water.

The system they designed enables the camera to detect contrasts, thus making invisible stains and patterns emerge from a background of four different types of fabric. It can also distinguish whether the stain was made by substances such as blood, household bleach, rust, soda and coffee.

“This technique can be used to detect a contrast for any surface stain,” Morgan said, adding it would have other possible forensic and industrial applications.

“The advantage is we can identify a spot where there is blood and then do confirmatory tests and DNA tests,” he said.

Morgan said more tests are needed before the camera finds its way to crime scenes.

“This is not next week’s CSI tool,” he said. “We still have to do validation studies and real-world studies.”

Funding for the study came from the National Institute of Justice. The researchers have been working on the project since January 2008.

| Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>