Novel Chemistry for Ethylene and Tin

Ethylene has long been known to react with transition metals such as iron or copper, but was not thought to react reversibly with metals such as tin or aluminum, said Philip Power, professor of chemistry at UC Davis and senior author on the paper.

“Reversibility is important, because it shows that it could be involved in catalytic processes,” Power said.

Catalysts are materials that allow chemical reactions to proceed more efficiently, often by forming a temporary intermediate structure. Catalytic processes are important both in living cells and in industrial chemistry.

Graduate student Yang Peng passed ethylene, at room temperature and normal atmospheric pressure, through a compound made up of two tin atoms bonded to each other and also to rings of carbon atoms. The green tin compound turned yellow in the presence of ethylene, and a new compound could be crystallized out.

Slight heating of the mixture reversed the reaction and released ethylene again.

Power said the result was unexpected, but noted, “you investigate the reactions, and sometimes you find something interesting.”

“It's serendipity, but you have to be looking and willing to follow it up,” he said.

Power did not foresee an immediate application for the discovery, but said that it would contribute in general to understanding ethylene catalysis. Some plants release ethylene to control fruit ripening, although no known biological molecules include a tin atom. There could be implications for industrial catalysis if similar behavior could be shown for a cheap metal like aluminum, he said.

Also contributing to the work were postdoctoral scientists Xinping Wang and Bobby Ellis, and X-ray crystallographer James Fettinger. The work was funded by the National Science Foundation.

Media Contact

Andy Fell EurekAlert!

More Information:

http://www.ucdavis.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors