Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical system in brain behaves differently in cocaine addicts

UT Southwestern Medical Center researchers have identified a chemical system in the brain that reacts differently in cocaine addicts, findings that could result in new treatment options for individuals addicted to the drug.

"We found that the amount of blood flow in areas of the brain known to be involved in the rewarding effects of cocaine and craving was different in cocaine addicts, compared with healthy subjects," said Dr. Bryon Adinoff, professor of psychiatry at UT Southwestern and lead author of a study that appeared in Neuropsychopharmacology. "Now we have a new target for pharmacologic intervention."

The researchers studied changes in the brain's cholinergic system, which involves the neurotransmitter acetylcholine and its receptors, or docking points, on brain cells to which the chemical attaches. Disruption of this system has been implicated in Alzheimer's disease. In animal models of addiction, the neurotransmitter has been shown to affect how hard an animal will work to get a drug, but until now, the cholinergic system's relation to addiction in humans hadn't been explored.

For this study, researchers looked at how alterations in the cholinergic system affected the limbic region in the brain of cocaine-addicted subjects. The limbic region of the brain supports functions such as emotions, behavior, learning and long-term memory. It includes brain structures such as the hippocampus and amygdala.

Much addiction-related work has focused on other chemicals in the brain, particularly dopamine. Dopamine is associated with the "pleasure system" of the brain and is released by naturally rewarding experiences such as food, sex and the use of drugs like cocaine.

"Very few treatments affecting these other chemical systems have been effective at helping cure addiction," said Dr. Michael Devous, professor of radiology at UT Southwestern and an author of the paper. "We have discovered abnormalities in the cholinergic system of cocaine addiction that may relate more to the addictive process than the reward process."

On two different days, researchers injected two substances known to be safe in humans into 22 healthy subjects and 23 cocaine addicts who had abstained from the drug for one to six weeks. The substances – scopolamine and physostigmine – act on acetylcholine receptors. On the third day, subjects were given saline. After each injection, subjects underwent brain scans using single photon emission computed tomography (SPECT) to look at blood flow in the limbic region.

"It's a complicated system," said Dr. Adinoff, holder of the Distinguished Professorship in Drug and Alcohol Abuse Research. "The idea was to push it; it didn't matter whether the system was more active or less active, we just wanted to see if it changed."

Both scopolamine and physostigmine induced blood flow changes in limbic brain regions, but the flow patterns were different in cocaine addicts and healthy subjects.

One of the most intriguing areas affected by both substances was the tail of the hippocampus, Dr. Adinoff said. Other research has shown that this section controls environmental cues that may make someone more likely to continue to use cocaine.

"That makes sense," Dr. Adinoff said. "It's a very specific and isolated region with lots of cholinergic receptors."

The amygdala, which is involved with cue-induced cravings, also was affected by pushing the cholinergic system.

"Both of these areas of the brain are relevant to drug cravings and reward, so perhaps we could inhibit desire for a drug by giving medication that would affect these systems," Dr. Adinoff said.

Dr. Adinoff said the next step would be to use functional magnetic resonance imaging (fMRI) to assess how the cholinergic system affects decision-making processes in addicts that heighten the risk of relapse.

Other UT Southwestern researchers participating in this study were Dr. Mark Williams, adjunct assistant professor of psychiatry; Dr. Susan Best, clinical associate professor of psychiatry; Thomas Harris, senior research scientist in radiology; Dr. Abu Minhajuddin, assistant professor of clinical sciences; and Dr. Munro Cullum, chief of psychology. Dr. Tanya Zielinski, formerly of UT Southwestern also participated in the study.

The research was funded by the National Institutes of Health and the Veterans Affairs North Texas Health Care System. Ceretec, an imaging agent, was provided by GE Healthcare.

Visit to learn more about UT Southwestern's clinical services in the neurosciences, including psychiatry.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via e-mail, subscribe at

LaKisha Ladson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>