Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical system in brain behaves differently in cocaine addicts

11.08.2010
UT Southwestern Medical Center researchers have identified a chemical system in the brain that reacts differently in cocaine addicts, findings that could result in new treatment options for individuals addicted to the drug.

"We found that the amount of blood flow in areas of the brain known to be involved in the rewarding effects of cocaine and craving was different in cocaine addicts, compared with healthy subjects," said Dr. Bryon Adinoff, professor of psychiatry at UT Southwestern and lead author of a study that appeared in Neuropsychopharmacology. "Now we have a new target for pharmacologic intervention."

The researchers studied changes in the brain's cholinergic system, which involves the neurotransmitter acetylcholine and its receptors, or docking points, on brain cells to which the chemical attaches. Disruption of this system has been implicated in Alzheimer's disease. In animal models of addiction, the neurotransmitter has been shown to affect how hard an animal will work to get a drug, but until now, the cholinergic system's relation to addiction in humans hadn't been explored.

For this study, researchers looked at how alterations in the cholinergic system affected the limbic region in the brain of cocaine-addicted subjects. The limbic region of the brain supports functions such as emotions, behavior, learning and long-term memory. It includes brain structures such as the hippocampus and amygdala.

Much addiction-related work has focused on other chemicals in the brain, particularly dopamine. Dopamine is associated with the "pleasure system" of the brain and is released by naturally rewarding experiences such as food, sex and the use of drugs like cocaine.

"Very few treatments affecting these other chemical systems have been effective at helping cure addiction," said Dr. Michael Devous, professor of radiology at UT Southwestern and an author of the paper. "We have discovered abnormalities in the cholinergic system of cocaine addiction that may relate more to the addictive process than the reward process."

On two different days, researchers injected two substances known to be safe in humans into 22 healthy subjects and 23 cocaine addicts who had abstained from the drug for one to six weeks. The substances – scopolamine and physostigmine – act on acetylcholine receptors. On the third day, subjects were given saline. After each injection, subjects underwent brain scans using single photon emission computed tomography (SPECT) to look at blood flow in the limbic region.

"It's a complicated system," said Dr. Adinoff, holder of the Distinguished Professorship in Drug and Alcohol Abuse Research. "The idea was to push it; it didn't matter whether the system was more active or less active, we just wanted to see if it changed."

Both scopolamine and physostigmine induced blood flow changes in limbic brain regions, but the flow patterns were different in cocaine addicts and healthy subjects.

One of the most intriguing areas affected by both substances was the tail of the hippocampus, Dr. Adinoff said. Other research has shown that this section controls environmental cues that may make someone more likely to continue to use cocaine.

"That makes sense," Dr. Adinoff said. "It's a very specific and isolated region with lots of cholinergic receptors."

The amygdala, which is involved with cue-induced cravings, also was affected by pushing the cholinergic system.

"Both of these areas of the brain are relevant to drug cravings and reward, so perhaps we could inhibit desire for a drug by giving medication that would affect these systems," Dr. Adinoff said.

Dr. Adinoff said the next step would be to use functional magnetic resonance imaging (fMRI) to assess how the cholinergic system affects decision-making processes in addicts that heighten the risk of relapse.

Other UT Southwestern researchers participating in this study were Dr. Mark Williams, adjunct assistant professor of psychiatry; Dr. Susan Best, clinical associate professor of psychiatry; Thomas Harris, senior research scientist in radiology; Dr. Abu Minhajuddin, assistant professor of clinical sciences; and Dr. Munro Cullum, chief of psychology. Dr. Tanya Zielinski, formerly of UT Southwestern also participated in the study.

The research was funded by the National Institutes of Health and the Veterans Affairs North Texas Health Care System. Ceretec, an imaging agent, was provided by GE Healthcare.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in the neurosciences, including psychiatry.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>