Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Chemical Reactions, Water Adds Speed Without Heat

18.05.2012
An international team of researchers has discovered how adding trace amounts of water can tremendously speed up chemical reactions—such as hydrogenation and hydrogenolysis—in which hydrogen is one of the reactants, or starting materials.

Led by Manos Mavrikakis, the Paul A. Elfers professor of chemical and biological engineering at the University of Wisconsin-Madison, and Flemming Besenbacher, a professor of physics and astronomy at the University of Aarhus, Denmark, the team published its findings in the May 18 issue of the journal Science.

Hydrogenation and hydrogenolysis reactions have huge applications in many key industrial sectors, including the petrochemical, pharmaceutical, food and agricultural industries. "In the petrochemical industry, for example, upgrading of oil to gasoline, and in making various biomass-derived products, you need to hydrogenate molecules—to add hydrogen—and all this happens through catalytic transformations," says Mavrikakis, who is among the top-100 chemists of the 2000-10 decade, according to Thomson Reuters.

A chemical reaction transforms a set of molecules (the reactants) into another set of molecules (the products), and a catalyst is a substance that accelerates that chemical reaction, while not itself being consumed in the process.

In industrial applications, the speed of catalytic transformations is important, says Mavrikakis. "The rate at which the hydrogen atoms diffuse on the surfaces of the catalyst determines, to a large extent, the rate of the chemical reaction—the rate at which we produce the products we want to produce," he says.

While many researchers have observed that water can accelerate chemical reactions in which hydrogen is a reactant or a product, until now, they lacked a fundamental grasp of how that effect was taking place, says Mavrikakis. "Nobody had appreciated the importance of water, even at the parts per million level," he says.

In their research, Mavrikakis and Besenbacher drew on their respective theoretical and experimental expertise to study metal oxides, a class of materials often used as catalysts or catalyst supports. They found that the presence of even the most minute amounts of water—on the order of those in an outer-space vacuum—can accelerate the diffusion of hydrogen atoms on iron oxide by 16 orders of magnitude at room temperature. In other words, water makes hydrogen diffuse 10,000 trillion times faster on metal oxides than it would have diffused in the absence of water. Without water, heat is needed to speed up that motion.

Besenbacher and his colleagues have one of the world's fastest scanning tunneling microscopes, which has atomic-scale resolution. With it, they could see how quickly hydrogen atoms diffused across iron oxide in the presence of water.

To explain the fundamental mechanisms of how that happened, Mavrikakis and his team used quantum mechanics, a branch of physics that explains the behavior of matter on the atomic scale; and massively parallel computing. Essentially, when water is present, hydrogen diffuses via a proton transfer, or proton "hopping," mechanism, in which hydrogen atoms from the oxide surface jump onto nearby water molecules and make hydronium ions, which then deliver their extra proton to the oxide surface and liberate a water molecule. That repeated process leads to rapid hydrogen atom diffusion on the oxide surface.

It's a process that doesn't happen willy-nilly, either. The researchers also showed that when they roll out the proverbial red carpet—a nanoscale "path" templated with hydrogen atoms—on iron oxide, the water will find that path, stay on it, and keep moving. The discovery could be relevant in nanoscale precision applications mediated by water, such as nanofluidics, nanotube sensors, and transfer across biological membranes, among others.

The U.S. Department of Energy Office of Basic Energy Sciences funded the UW-Madison research. Other UW-Madison authors on the Science paper include chemical and biological engineering research scientist Guowen Peng, PhD student Carrie Farberow, and PhD alumnus Lars Grabow (now an assistant professor at the University of Houston). Other authors include Lindsay Merte, Ralf Bechstein, Felix Rieboldt, Wilhelmine Kudernatsch, Stefan Wendt and Erik Laegsgaard of Aarhus University.

Manos Mavrikakis | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>