Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical makes blind mice see; compound holds promise for treating humans

26.07.2012
Genetically blind mice see light after injection of photoswitch

A team of University of California, Berkeley, scientists in collaboration with researchers at the University of Munich and University of Washington in Seattle has discovered a chemical that temporarily restores some vision to blind mice, and is working on an improved compound that may someday allow people with degenerative blindness to see again.

The approach could eventually help those with retinitis pigmentosa, a genetic disease that is the most common inherited form of blindness, as well as age-related macular degeneration, the most common cause of acquired blindness in the developed world. In both diseases, the light sensitive cells in the retina — the rods and cones — die, leaving the eye without functional photoreceptors.

The chemical, called AAQ, acts by making the remaining, normally "blind" cells in the retina sensitive to light, said lead researcher Richard Kramer, UC Berkeley professor of molecular and cell biology. AAQ is a photoswitch that binds to protein ion channels on the surface of retinal cells. When switched on by light, AAQ alters the flow of ions through the channels and activates these neurons much the way rods and cones are activated by light.

"This is similar to the way local anesthetics work: they embed themselves in ion channels and stick around for a long time, so that you stay numb for a long time," Kramer said. "Our molecule is different in that it's light sensitive, so you can turn it on and off and turn on or off neural activity."

Because the chemical eventually wears off, it may offer a safer alternative to other experimental approaches for restoring sight, such as gene or stem cell therapies, which permanently change the retina. It is also less invasive than implanting light-sensitive chips in the eye.

"The advantage of this approach is that it is a simple chemical, which means that you can change the dosage, you can use it in combination with other therapies, or you can discontinue the therapy if you don't like the results. As improved chemicals become available, you could offer them to patients. You can't do that when you surgically implant a chip or after you genetically modify somebody," Kramer said.

"This is a major advance in the field of vision restoration," said co-author Dr. Russell Van Gelder, an ophthalmologist and chair of the Department of Ophthalmology at the University of Washington, Seattle.

Kramer, Van Gelder, chemist Dirk Trauner and their colleagues at UC Berkeley, the University of Washington, Seattle, and the University of Munich will publish their findings Thursday, July 26, in the journal Neuron.

The blind mice in the experiment had genetic mutations that made their rods and cones die within months of birth and inactivated other photopigments in the eye. After injecting very small amounts of AAQ into the eyes of the blind mice, Kramer and his colleagues confirmed that they had restored light sensitivity because the mice's pupils contracted in bright light, and the mice showed light avoidance, a typical rodent behavior impossible without the animals being able to see some light. Kramer is hoping to conduct more sophisticated vision tests in rodents injected with the next generation of the compound.

"The photoswitch approach offers real hope to patients with retinal degeneration," Van Gelder said. "We still need to show that these compounds are safe and will work in people the way they work in mice, but these results demonstrate that this class of compound restores light sensitivity to retinas blind from genetic disease."

From optogenetics to implanted chips

The current technologies being evaluated for restoring sight to people whose rods and cones have died include injection of stem cells to regenerate the rods and cones; "optogenetics," that is, gene therapy to insert a photoreceptor gene into blind neurons to make them sensitive to light; and installation of electronic prosthetic devices, such as a small light-sensitive retinal chip with electrodes that stimulate blind neurons. Several dozen people already have retinal implants and have had rudimentary, low vision restored, Kramer said.

Eight years ago, Kramer, Trauner, a former UC Berkeley chemist now at the University of Munich, and their colleagues developed an optogenetic technique to chemically alter potassium ion channels in blind neurons so that a photoswitch could latch on. Potassium channels normally open to turn a cell off, but with the attached photoswitch, they were opened when hit by ultraviolet light and closed when hit by green light, thereby activating and deactivating the neurons.

Subsequently, Trauner synthesized AAQ (acrylamide-azobenzene-quaternary ammonium), a photoswitch that attaches to potassium channels without the need to genetically modify the channel. Tests of this compound are reported in the current Neuron paper.

New versions of AAQ now being tested are better, Kramer said. They activate neurons for days rather than hours using blue-green light of moderate intensity, and these photoswitches naturally deactivate in darkness, so that a second color of light is not needed to switch them off.

"This is what we are really excited about," he said.

Coauthors with Kramer, Van Gelder and Trauner are UC Berkeley graduate students Aleksandra Polosukhina, Jeffrey Litt, Ivan Tochitsky, Ivan De Kouchkovsky, Tracy Huang and Katharine Borges; and post-doctoral fellow Joseph Nemargut and ophthalmology resident Yivgeny Sychev at the University of Washington.

The work was supported by the National Eye Institute of the National Institutes of Health (EY018957 & EY003176) and Research to Prevent Blindness.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>