Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical chameleon tamed: RUB researchers give floppy molecule a structure through solvent effects

14.03.2013
Computer simulations show: protonated methane is tamed by microsolvation

How you get the chameleon of the molecules to settle on a particular “look” has been discovered by RUB chemists led by Professor Dominik Marx. The molecule CH5+ is normally not to be described by a single rigid structure, but is dynamically flexible.


Giving the “chameleon” molecule structure: Depending on how many H2 solvent molecules (blue) attach to the CH5+ molecule, the area in which the hydrogen atoms of the CH5+ molecule move changes (red). Its structure is thus partially “frozen”. The areas represent quantum mechanical probability densities at a temperature of 20 Kelvin.
Image: A. Witt, S. Ivanov, D. Marx

By means of computer simulations, the team from the Centre for Theoretical Chemistry showed that CH5+ takes on a particular structure once you attach hydrogen molecules. “In this way, we have taken an important step towards understanding experimental vibrational spectra in the future”, says Dominik Marx. The researchers report in the journal “Physical Review Letters”.

In the CH5+ molecule, the hydrogen atoms are permanently on the move

The superacid CH5+, also called protonated methane, occurs in outer space - where new stars are formed. Researchers already discovered the molecule in the 1950s, but many of its features are still unknown. Unlike conventional molecules in which all the atoms have a fixed position, the five hydrogen atoms in CH5+ are constantly moving around the carbon centre. Scientists speak of “hydrogen scrambling”.

This dynamically flexible structure has been explained by the research groups led by Dominik Marx and Stefan Schlemmer of the University of Cologne as part of a long-term collaboration (we reported in July 2005 and March 2010: http://www.pm.ruhr-uni-bochum.de/pm2005/msg00209.htm, http://aktuell.rub.de/pm2010/msg00066.htm).

Marx‘s team now wanted to know if the structure can be “frozen” under certain conditions by attaching solvent molecules – a process called microsolvation.

Microsolvatation: addition of hydrogen molecules to CH5+ one by one

To this end, the chemists surrounded the CH5+ molecule in the virtual lab with a few hydrogen molecules (H2). Here, the result is the same as when dissolving normal ions in water: a relatively tightly bound shell of water molecules attaches to each ion in order to then transfer individual ions with several solvent molecules bound to them to the gas phase. To describe the CH5+ hydrogen complexes, classical ab initio molecular dynamics simulations are not sufficient. The reason is that “hydrogen scrambling” is based on quantum effects. Therefore Marx’s group used a fully quantum mechanical method which they developed in house, known as ab initio path integral simulation. With this, the essential quantum effects can be taken into account dependent on the temperature.

Hydrogen molecules give the CH5+ molecule “structure”

The chemists carried out the simulations at a temperature of 20 Kelvin, which corresponds to -253 degrees Celsius. In the non-microsolvated form, the five hydrogen atoms in the CH5+ molecule are permanently changing positions even at such low temperatures - and entirely due to quantum mechanical effects. If CH5+ is surrounded by hydrogen molecules, this “hydrogen scrambling” is, however, significantly effected and may even completely come to a halt: the molecule assumes a rudimentary structure. How this looks exactly depends on how many hydrogen molecules are attached to the CH5+ molecule. “What especially interests me is if superfluid helium - like the hydrogen molecules here – can also stop hydrogen scrambling in CH5+” says Marx.

Experimental researchers use superfluid helium to measure high-resolution spectra of molecules embedded in such droplets. For CH5+ this has so far not been possible. In the superfluid phase, the helium atoms are, however, indistinguishable due to quantum statistical effects. To be able to describe this fact, the theoretical chemists at the RUB spent many years developing a new, even more complex path-integral-based simulation method that has recently also been applied to real problems.

Funding

Researchers at the RUB explore the influences of microsolvation on small molecules in the gas phase and in helium droplets in the Excellence Cluster “Ruhr Explores Solvation” RESOLV (EXC 1069), which was approved by the German Research Foundation in June 2012.

Bibliographic record

A. Witt, S. Ivanov, D. Marx (2013): Microsolvation-Induced Quantum Localization in Protonated Methane, Physical Review Letters, doi: 10.1103/PhysRevLett.110.083003

Further information

Prof. Dr. Dominik Marx, Centre for Theoretical Chemistry, Department of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28083, E-Mail: dominik.marx@rub.de

Click for more

Animations and background information on pure CH5+
http://www.theochem.rub.de/go/ch5p.html
Theoretical Chemistry
http://www.theochem.rub.de/home.en.html
Solvation Science@RUB (RESOLV)
http://www.rub.de/solvation/
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>