Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical chameleon tamed: RUB researchers give floppy molecule a structure through solvent effects

Computer simulations show: protonated methane is tamed by microsolvation

How you get the chameleon of the molecules to settle on a particular “look” has been discovered by RUB chemists led by Professor Dominik Marx. The molecule CH5+ is normally not to be described by a single rigid structure, but is dynamically flexible.

Giving the “chameleon” molecule structure: Depending on how many H2 solvent molecules (blue) attach to the CH5+ molecule, the area in which the hydrogen atoms of the CH5+ molecule move changes (red). Its structure is thus partially “frozen”. The areas represent quantum mechanical probability densities at a temperature of 20 Kelvin.
Image: A. Witt, S. Ivanov, D. Marx

By means of computer simulations, the team from the Centre for Theoretical Chemistry showed that CH5+ takes on a particular structure once you attach hydrogen molecules. “In this way, we have taken an important step towards understanding experimental vibrational spectra in the future”, says Dominik Marx. The researchers report in the journal “Physical Review Letters”.

In the CH5+ molecule, the hydrogen atoms are permanently on the move

The superacid CH5+, also called protonated methane, occurs in outer space - where new stars are formed. Researchers already discovered the molecule in the 1950s, but many of its features are still unknown. Unlike conventional molecules in which all the atoms have a fixed position, the five hydrogen atoms in CH5+ are constantly moving around the carbon centre. Scientists speak of “hydrogen scrambling”.

This dynamically flexible structure has been explained by the research groups led by Dominik Marx and Stefan Schlemmer of the University of Cologne as part of a long-term collaboration (we reported in July 2005 and March 2010:,

Marx‘s team now wanted to know if the structure can be “frozen” under certain conditions by attaching solvent molecules – a process called microsolvation.

Microsolvatation: addition of hydrogen molecules to CH5+ one by one

To this end, the chemists surrounded the CH5+ molecule in the virtual lab with a few hydrogen molecules (H2). Here, the result is the same as when dissolving normal ions in water: a relatively tightly bound shell of water molecules attaches to each ion in order to then transfer individual ions with several solvent molecules bound to them to the gas phase. To describe the CH5+ hydrogen complexes, classical ab initio molecular dynamics simulations are not sufficient. The reason is that “hydrogen scrambling” is based on quantum effects. Therefore Marx’s group used a fully quantum mechanical method which they developed in house, known as ab initio path integral simulation. With this, the essential quantum effects can be taken into account dependent on the temperature.

Hydrogen molecules give the CH5+ molecule “structure”

The chemists carried out the simulations at a temperature of 20 Kelvin, which corresponds to -253 degrees Celsius. In the non-microsolvated form, the five hydrogen atoms in the CH5+ molecule are permanently changing positions even at such low temperatures - and entirely due to quantum mechanical effects. If CH5+ is surrounded by hydrogen molecules, this “hydrogen scrambling” is, however, significantly effected and may even completely come to a halt: the molecule assumes a rudimentary structure. How this looks exactly depends on how many hydrogen molecules are attached to the CH5+ molecule. “What especially interests me is if superfluid helium - like the hydrogen molecules here – can also stop hydrogen scrambling in CH5+” says Marx.

Experimental researchers use superfluid helium to measure high-resolution spectra of molecules embedded in such droplets. For CH5+ this has so far not been possible. In the superfluid phase, the helium atoms are, however, indistinguishable due to quantum statistical effects. To be able to describe this fact, the theoretical chemists at the RUB spent many years developing a new, even more complex path-integral-based simulation method that has recently also been applied to real problems.


Researchers at the RUB explore the influences of microsolvation on small molecules in the gas phase and in helium droplets in the Excellence Cluster “Ruhr Explores Solvation” RESOLV (EXC 1069), which was approved by the German Research Foundation in June 2012.

Bibliographic record

A. Witt, S. Ivanov, D. Marx (2013): Microsolvation-Induced Quantum Localization in Protonated Methane, Physical Review Letters, doi: 10.1103/PhysRevLett.110.083003

Further information

Prof. Dr. Dominik Marx, Centre for Theoretical Chemistry, Department of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28083, E-Mail:

Click for more

Animations and background information on pure CH5+
Theoretical Chemistry
Solvation Science@RUB (RESOLV)
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>