Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cheetahs outpace greyhounds

21.06.2012
In a 0-60 mph stand off, most cars would be hard pressed to give a cheetah a run for its money, and at their highest recorded speed of 29m/s (65mph) cheetahs easily outstrip the fastest greyhounds.

But, according to Alan Wilson from the Royal Veterinary College, UK, there is no clear reason for the cheetah's exceptional performance. 'Cheetahs and greyhounds are known to use a rotary gallop and physically they are remarkably similar, yet there is this bewitching difference in maximum speed of almost a factor of two', he says.

Teaming up with Penny Hudson and Sandra Corr, Wilson decided to compare how cheetahs and greyhounds sprint to see if there were any mechanical differences between the two animals' movements and they publish their findings in The Journal of Experimental Biology at http://jeb.biologists.org.

Knowing that captive big cats are happy to chase a lure, the trio were confident that they could get the cheetahs at ZSL Whipsnade Zoo, UK, and the Ann van Dyk Cheetah Centre, South Africa, to sprint across force plates buried in a track in the animals' enclosure. The problem would be getting the valuable equipment to work in the open. 'Force plates are cosseted, loved pieces of equipment that people don't generally take outside of the lab and bury in the ground in the English summer', Wilson chuckles. However, after successfully installing eight force plates in the cheetahs' enclosure, along with four high speed cameras filming at 1000frames/s, Hudson tempted the cheetahs to gallop along the track with a piece of chicken attached to a truck starter motor while she measured the forces exerted on the animals' limbs, their body motion and footfall patterns. She also repeated the measurements on galloping greyhounds back in the lab, filming the animals at a slower 350frames/s.

But, when Hudson compared the animals' top speeds, she was surprised to see that the trained greyhounds galloped faster than captive cheetahs, clocking up a top speed of 19m/s compared with the cheetahs' 17.8m/s. Nevertheless, Hudson was able to identify clear differences in the animals' stride patterns that could explain how wild cheetahs would outpace the dogs.

When running at the same speed, the big cats' stride was slightly longer than the greyhounds', although the cheetahs compensated for this with a slightly lower stride frequency. Also, the cheetahs increased their stride frequency as they shifted up through the gears – running at 2.4strides/s at a leisurely 9m/s, rising to 3.2strides/s at their top speed of 17m/s – whereas the greyhounds maintained a constant stride rate around 3.5strides/s across their entire speed range. Wilson suspects that wild cats may be able to reach stride frequencies of 4strides/s, which, in combination with longer stride lengths, may allow them to outstrip their captive cousins and hit top speeds of 29m/s.

Also, when Hudson analysed the length of time that each animal's foot remained in contact with the ground – the stance time – she noticed that for some of the cheetah's limbs it was longer, and the team suspects that this may be another factor that contributes to the wild cheetah's record performance. Explaining that increasing the stance time reduces the peak loads on the animal's legs, Wilson says, '[with] a longer stance time the cheetah will get to the limiting load at higher speed than the greyhound'.

Speculating about the relatively poor performance of the captive cheetahs, Wilson suggests that they may lack motivation. 'They have lived in a zoo for several generations and have never had to run to catch food. They have probably never learned to run particularly', he says, adding, 'The next stage is to try to make measurements in wild cheetahs in the hope of seeing higher speeds.'

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/14/2425.abstract

REFERENCE: Hudson, P. E., Corr, S. A. and Wilson, A. M. (2012). High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics. J. Exp. Biol. 215, 2425-2434.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>