Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checkered History of Mother and Daughter Cells Explains Cell Cycle Differences

21.10.2009
When mother and daughter cells are created each time a cell divides, they are not exactly alike. They have the same set of genes, but differ in the way they regulate them.

New research now reveals that these regulatory differences between mother and daughter cells are directly linked to how they prepare for their next split. The work, a collaboration between scientists at Rockefeller University and the State University of New York, Stony Brook, may ultimately lead to a better understanding of how cell division goes awry in different types of cancer. The findings are reported in this week’s PLoS Biology.

“You can basically think of mother and daughter cells as different cells just like you would a neuron and liver cell but on a much subtler level,” says first author Stefano Di Talia, who received his Ph.D. from Rockefeller in 2009. “We found that their differences in gene expression are also what makes the mother and daughter cells start their cell cycles differently.”

When a mature cell divides, it produces a mother and a daughter cell, the daughter being smaller than the mother, explains Di Talia, who is now a postdoc at Princeton University. Since the 1970s, it was thought that both mother and daughter cells use the same gears and levers to prepare for cell division. The only difference was that the daughter cell would take longer to start dividing on account of its size.

This tidy explanation now gives way to a more nuanced version, the seeds of which can be traced to research from the University of Wisconsin in 2003. It was then proposed that the size of the daughter cell has no bearing on whether it is ready to divide. What matters is that the daughter cell, and not the mother cell, receives a protein called Ace2 at the time the two cells are born. “This model was against the accepted dogma and against our own previous findings. Our work was an attempt to resolve the debate,” says Di Talia.

Di Talia and Frederick R. Cross, head of Rockefeller’s Laboratory of Yeast Molecular Genetics and a researcher who, like the Wisconsin group, works with budding yeast, seem to have reconciled the two theories and in the process nailed down new details.

The researchers found that both mothers and daughters do control and sense their size before committing to divide but the levers and gears that they use to make that commitment are different. The reason: Daughters, but not mothers, receive the protein Ace2 as well as a never-before-implicated protein called Ash1, which, like Ace2, controls the levers that crank genes into gear.

In their work, Di Talia and Cross studied a phase of the cell cycle known as G1, during which cells determine whether they are healthy enough to enter another grueling phase of division. G1 is considered critical because mistakes in this process can lead to cancer.

Di Talia and Cross, with colleagues Bruce Futcher and Hongyin Wang at SUNY Stony Brook, found that daughter cells, which normally have Ace2 and Ash1, interpret their size as 20 percent smaller than their birth twin. The researchers show that, without these proteins, daughter cells begin dividing as if they were mother cells, even at a size that would normally be deemed too small. When Ace2 and Ash1 were genetically manipulated to localize into mothers as well, the opposite happened: they unnecessarily continued to grow and began dividing as if they were daughters.

This critical finding showed that the direct target of these two proteins is a gene called CLN3, which scientists have long suspected is the ultimate green light for cells to start dividing. The reason daughter cells spend a longer time preparing for cell division is because both Ace2 and Ash1 lower the expression of CLN3. To make sure daughter cells do not start dividing before they are ready, and as backup, Ace2 also turns on production of Ash1.

“This work builds on our previous findings very nicely,” says Di Talia. “That CLN3 is the central regulator of this cell cycle phase and that it is controlled very precisely shows that even small changes can result in big differences.”

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>