Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checkered History of Mother and Daughter Cells Explains Cell Cycle Differences

21.10.2009
When mother and daughter cells are created each time a cell divides, they are not exactly alike. They have the same set of genes, but differ in the way they regulate them.

New research now reveals that these regulatory differences between mother and daughter cells are directly linked to how they prepare for their next split. The work, a collaboration between scientists at Rockefeller University and the State University of New York, Stony Brook, may ultimately lead to a better understanding of how cell division goes awry in different types of cancer. The findings are reported in this week’s PLoS Biology.

“You can basically think of mother and daughter cells as different cells just like you would a neuron and liver cell but on a much subtler level,” says first author Stefano Di Talia, who received his Ph.D. from Rockefeller in 2009. “We found that their differences in gene expression are also what makes the mother and daughter cells start their cell cycles differently.”

When a mature cell divides, it produces a mother and a daughter cell, the daughter being smaller than the mother, explains Di Talia, who is now a postdoc at Princeton University. Since the 1970s, it was thought that both mother and daughter cells use the same gears and levers to prepare for cell division. The only difference was that the daughter cell would take longer to start dividing on account of its size.

This tidy explanation now gives way to a more nuanced version, the seeds of which can be traced to research from the University of Wisconsin in 2003. It was then proposed that the size of the daughter cell has no bearing on whether it is ready to divide. What matters is that the daughter cell, and not the mother cell, receives a protein called Ace2 at the time the two cells are born. “This model was against the accepted dogma and against our own previous findings. Our work was an attempt to resolve the debate,” says Di Talia.

Di Talia and Frederick R. Cross, head of Rockefeller’s Laboratory of Yeast Molecular Genetics and a researcher who, like the Wisconsin group, works with budding yeast, seem to have reconciled the two theories and in the process nailed down new details.

The researchers found that both mothers and daughters do control and sense their size before committing to divide but the levers and gears that they use to make that commitment are different. The reason: Daughters, but not mothers, receive the protein Ace2 as well as a never-before-implicated protein called Ash1, which, like Ace2, controls the levers that crank genes into gear.

In their work, Di Talia and Cross studied a phase of the cell cycle known as G1, during which cells determine whether they are healthy enough to enter another grueling phase of division. G1 is considered critical because mistakes in this process can lead to cancer.

Di Talia and Cross, with colleagues Bruce Futcher and Hongyin Wang at SUNY Stony Brook, found that daughter cells, which normally have Ace2 and Ash1, interpret their size as 20 percent smaller than their birth twin. The researchers show that, without these proteins, daughter cells begin dividing as if they were mother cells, even at a size that would normally be deemed too small. When Ace2 and Ash1 were genetically manipulated to localize into mothers as well, the opposite happened: they unnecessarily continued to grow and began dividing as if they were daughters.

This critical finding showed that the direct target of these two proteins is a gene called CLN3, which scientists have long suspected is the ultimate green light for cells to start dividing. The reason daughter cells spend a longer time preparing for cell division is because both Ace2 and Ash1 lower the expression of CLN3. To make sure daughter cells do not start dividing before they are ready, and as backup, Ace2 also turns on production of Ash1.

“This work builds on our previous findings very nicely,” says Di Talia. “That CLN3 is the central regulator of this cell cycle phase and that it is controlled very precisely shows that even small changes can result in big differences.”

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>