Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channeling into cell control

23.01.2012
A new model of intracellular signaling via calcium ions will assist in understanding the effects of calcium fluctuations

A research team from the RIKEN Brain Science Institute in Wako has visualized and accurately modeled the molecular changes that open and close the internal membrane channels for calcium ions within cells1. The ions moving through these channels act as intracellular messengers, relaying information that regulates the activity of the proteins that control many critical processes of life and death—from fertilization through to development, metabolism and, ultimately, death.


Figure 1: A cell emitting fluorescent signals as a result of attaching specialized proteins to two of its channel-forming IP3Rs (scale bar, 10 µm). Copyright : PNAS

Previous work by the team showed that inositol trisphosphate (IP3) and calcium ions are involved in regulating channel opening and closing. The channels are formed from complexes of four IP3 receptors (IP3R) that bind IP3 and calcium. At low concentrations of calcium ions, channel opening is stimulated; but at higher levels, it is inhibited. Although cell biologists have proposed models depicting this process, they had failed to collect any definitive evidence supporting a particular the mechanism, until now.

In live cells, Takayuki Michikawa, Katsuhiko Mikoshiba and their colleagues attached fluorescent proteins to two of the channel-forming IP3Rs because these receptors change shape in response to the binding of IP3 and calcium, and energy flows between this pair of proteins in a process known as Förster resonance energy transfer (FRET) (Fig. 1). In a detectable way, FRET changes the fluorescent light emitted, so the impact of such links on the conformation of the channel can be studied.

The researchers found there were at least five binding sites on each IP3R, one for IP3 and at least four for calcium. Binding IP3 tended to bring the receptors forming the channel closer together, while calcium tended to make them relax. But the effects of combining the two were not simply additive. At a constant level of IP3, they observed an optimum concentration of calcium that had the most impact on opening the channel.

From these results, the researchers proposed a model whereby IP3 and calcium ions compete with one another—the binding of IP3 prevents calcium linking to certain sites, and vice versa. High concentrations of calcium prevent IP3 from binding at all. Further, the researchers proposed two different types of calcium binding sites: low-affinity sites responsible for channel activation, and high-affinity sites for inactivation.

“During the past five years, we have succeeded in visualizing IP3 dynamics and calcium pump activity,” Michikawa and Mikoshiba say. “In combination with the model for the calcium release channel described in this study, we are now ready to understand what happens in living cells during calcium ion oscillations.”

The corresponding author for this highlight is based at the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>