Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cerebral sensory development: genetic programming versus environmental stimuli

23.12.2013
Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.

The part of the brain associated with the sense of touch – the somatosensory cerebral cortex – has attracted numerous studies aimed at determining the influence of extrinsic environmental and intrinsic genetic factors in sensory development. Understanding the role of these factors in sensory map formation and development may provide insights into the mechanisms behind other circuits in the central nervous system.


A model of the mechanisms underlying the initiation of barrel formation and eye-specific segregation. The birth of pups leads to the attenuation of 5-HT signalling, which results in the initiation of barrel formation in S1 (brown) and eye-speciic segregation of RGC axons in dLGN. /Red and green represent RGC axons derived from the ipsilateral and contralateral eyes, respectively. /Yellow represents regions containing both ipsilateral and contralateral RGC axons.

Now Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.

Rodents have a sensory map in the primary somatosensory cerebral cortex, characterized by cell clusters called barrels filled with patches of nerve fibre. Inputs from the part of the brain that link to the rodent’s whiskers terminate at these barrels. The barrel distribution pattern is the same as the distribution of the whiskers on the snout and forms soon after birth.

The researchers induced preterm birth in mice and quantitatively compared the degree of development of whisker-related barrel pattern formation with mice born after the full term of pregnancy. At set periods after conception, barrel formation was significantly more advanced in the mice born preterm. Further experiments ruled out the role of maternal hormones prior to birth and identified the critical effect of serotonin reductions during the days after birth.

“Interestingly, the regulatory mechanisms described here were also found to regulate eye-specific segregation in the visual system, raising the possibility that they are utilized in various brain regions,” the researchers suggest. They add that further investigation of the range of roles of serotonin and the underlying mechanisms will be interesting for future research.

Further information

Organization of Frontier Science and Innovation
Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
E-mail: fsojimu@adm.kanazawa-u.ac.jp
Website: http://www.o-fsi.kanazawa-u.ac.jp/en/about/
About Kanazawa University
As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.

Kanazawa University website: http://www.kanazawa-u.ac.jp/e/index.html

Associated links
•December issue of the Kanazawa University Research Bulletin
•Organization of Frontier Science and Innovation, Kanazawa University
Journal information
Tomohisa Toda1,2,3,4,5, Daigo Homma6, Hirofumi Tokuoka6, Itaru Hayakawa4, Yukihiko Sugimoto7, Hiroshi Ichinose6 and Hiroshi Kawasaki1,2,3,4*
Birth regulates the initiation of sensory map formation through serotonin signaling developmental Cell 27 (2013) 32-46
1. Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
2. Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, Japan
3. Innovative Preventive Medicine Education and Research Center, Kanazawa University, Ishikawa 920-8640, Japan
4. Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
5. Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
6. Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
7. Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan

*corresponding author, e-mail address: yyoneda@p.kanazawa-u.ac.jp

Adarsh Sandhu | Research asia research news
Further information:
http://www.kanazawa-u.ac.jp/e/index.html
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>