Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cerebral sensory development: genetic programming versus environmental stimuli

23.12.2013
Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.

The part of the brain associated with the sense of touch – the somatosensory cerebral cortex – has attracted numerous studies aimed at determining the influence of extrinsic environmental and intrinsic genetic factors in sensory development. Understanding the role of these factors in sensory map formation and development may provide insights into the mechanisms behind other circuits in the central nervous system.


A model of the mechanisms underlying the initiation of barrel formation and eye-specific segregation. The birth of pups leads to the attenuation of 5-HT signalling, which results in the initiation of barrel formation in S1 (brown) and eye-speciic segregation of RGC axons in dLGN. /Red and green represent RGC axons derived from the ipsilateral and contralateral eyes, respectively. /Yellow represents regions containing both ipsilateral and contralateral RGC axons.

Now Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.

Rodents have a sensory map in the primary somatosensory cerebral cortex, characterized by cell clusters called barrels filled with patches of nerve fibre. Inputs from the part of the brain that link to the rodent’s whiskers terminate at these barrels. The barrel distribution pattern is the same as the distribution of the whiskers on the snout and forms soon after birth.

The researchers induced preterm birth in mice and quantitatively compared the degree of development of whisker-related barrel pattern formation with mice born after the full term of pregnancy. At set periods after conception, barrel formation was significantly more advanced in the mice born preterm. Further experiments ruled out the role of maternal hormones prior to birth and identified the critical effect of serotonin reductions during the days after birth.

“Interestingly, the regulatory mechanisms described here were also found to regulate eye-specific segregation in the visual system, raising the possibility that they are utilized in various brain regions,” the researchers suggest. They add that further investigation of the range of roles of serotonin and the underlying mechanisms will be interesting for future research.

Further information

Organization of Frontier Science and Innovation
Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
E-mail: fsojimu@adm.kanazawa-u.ac.jp
Website: http://www.o-fsi.kanazawa-u.ac.jp/en/about/
About Kanazawa University
As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.

Kanazawa University website: http://www.kanazawa-u.ac.jp/e/index.html

Associated links
•December issue of the Kanazawa University Research Bulletin
•Organization of Frontier Science and Innovation, Kanazawa University
Journal information
Tomohisa Toda1,2,3,4,5, Daigo Homma6, Hirofumi Tokuoka6, Itaru Hayakawa4, Yukihiko Sugimoto7, Hiroshi Ichinose6 and Hiroshi Kawasaki1,2,3,4*
Birth regulates the initiation of sensory map formation through serotonin signaling developmental Cell 27 (2013) 32-46
1. Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
2. Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, Japan
3. Innovative Preventive Medicine Education and Research Center, Kanazawa University, Ishikawa 920-8640, Japan
4. Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
5. Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
6. Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
7. Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan

*corresponding author, e-mail address: yyoneda@p.kanazawa-u.ac.jp

Adarsh Sandhu | Research asia research news
Further information:
http://www.kanazawa-u.ac.jp/e/index.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>