Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Stress Management in People and Plants

26.10.2015

Heidelberg bioscientists discover the function of a fundamental biological mechanism

In their research on the model plant thale cress (Arabidopsis thaliana), scientists from the Centre for Organismal Studies of Heidelberg University have discovered a major function of a fundamental cellular mechanism for stress management. They observed that the biochemistry and cell biology of plants and humans are quite similar.

Their findings are significant for the stress biology of human cells as well as the development of agricultural crops that are highly resistant to their primary stressor, drought. The Heidelberg team under the direction of Prof. Dr. Rüdiger Hell and Dr. Markus Wirtz also cooperated with researchers from France and Norway in their investigations. Their results were published in the journal “Nature Communications”.

Proteins have many tasks to fulfil in the structure, function and regulation of cells. Once the proteins are formed, they are further adapted for their very specific jobs. “One of the most frequent changes is the attachment of an acetic acid residue on the amino-terminal end of the proteins. Lacking this modification, the plants cannot survive, and this same lack in certain proteins in humans leads to illness, developmental problems and cell death,” explains Prof. Hell.

Although up to 80 percent of proteins in the cytoplasm of human cells are modified by an acetic acid residue at their amino terminus, the function of this modification has only been studied for a handful of proteins.

The Heidelberg researchers generated genetically modified plants with protein populations that carry less acetic acid residues and analysed the results. “The changed pattern of amino-terminal modification proteins by acetic acid surprisingly made the genetically modified plants proved to be more drought-resistant,” continues Dr. Wirtz. The reason turned out to be mediated by the plant hormone abscisic acid, a key player in drought stress. The drought resistance was based on the constant activation of natural plant processes to counteract the stress, such as closing the stomata and lengthening the primary root.

Original publication:
E. Linster, I. Stephan, W.V. Bienvenut, J. Maple-Grødem, L.M. Myklebust, M. Huber, M. Reichelt, C. Sticht, S. Geir Møller, T. Meinnel, T. Arnesen, C. Giglione, R. Hell, M. Wirtz: Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nature Communications (17 July 2015), doi: 10.1038/ncomms8640

Contact:
Prof. Dr. Rüdiger Hell
Centre for Organismal Studies (COS)
Phone + 49 6221 54-6284
ruediger.hell@cos.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Arabidopsis Cellular Plants Stress acetic acid cell biology cell death human cells proteins proteins in

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>