Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular pathway linked to diabetes, heart disease

20.04.2012
Cardiac researchers at the University of Cincinnati (UC) have found that a certain cellular pathway is linked to obesity-related disorders, like diabetes, heart disease and fatty liver disease.

These findings, being presented at the American Heart Association's Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) 2012 Scientific Sessions in Chicago, April 19, 2012, could lead to a potential molecular target for metabolic diseases in humans.

Building on previous research, Tapan Chatterjee, PhD, and researchers in the division of cardiovascular diseases at UC found that genetically "deleting" the enzyme histone deacetylase 9 (HDAC9) completely protected mice against the health consequences of high-fat feeding, like elevated blood sugar, cholesterol levels and fatty liver disease.

Chatterjee says HDAC9 has been found to lead to obesity-induced body fat dysfunction.

"Failure of fat cells to differentiate and properly store excess calories in obesity is associated with adipose tissue (fat) inflammation, fatty liver disease, insulin resistance, diabetes and increased cardiovascular diseases," he says. "We know that dysfunctional fat tissue is the underlying culprit in obesity-related diseases.

"Caloric intake promotes HDAC9 down-regulation to allow the conversion of precursor fat cells to 'functional' fat cells, capable of efficiently storing excess calories for future use and also maintaining whole-body lipid and glucose stability," Chatterjee continues. "Unfortunately, during chronic over-feeding, the HDAC9 level is up-regulated in fat tissue, thereby blocking the conversion which leads to adipose tissue dysfunction and the onset of diseases such as diabetes, liver disease, high blood pressure and heart disease—the nation's No. 1 killer."

Chatterjee says that in previous studies, researchers found that elevated HDAC9 expression in fat cells was the underlying molecular culprit for dysfunctional fat tissue during obesity.

"In this study, we used 'knockout' mouse models to test this theory," he says. "Deleting the HDAC9 gene completely prevented mice from developing obesity-related diseases during chronic high-fat feeding. These results mean the discovery of a potential molecular culprit in obesity-related disease development."

Chatterjee says emerging evidence from his laboratory indicates that unhealthy dietary habits over a long period of time promote specific changes in a human's epigenetic structure—meaning changes in the gene structure that influences its function—to switch HDAC9 expression to a higher level.

"This switch paves the way for development of a chronic disease state, despite subsequent dietary intervention," he says. "We are currently focusing our attention to design drugs to reverse such epigenetic changes to bring HDAC9 expression down and restore normal fat cell function in obese individuals, representing a novel treatment strategy for obesity-related disease conditions."

This study was funded by a grant from the National Heart Lung and Blood Institute.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>