Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells simply avoid chromosome confusion


Reproductive cell division has a mechanical safeguard against errors

Reproductive cell division has evolved a simple, mechanical solution to avoid chromosome sorting errors, researchers report in the Sept. 11 Science Express.

This is atotal internal reflection fluorescence (TIRF) microscope used in Charles Asbury's lab at the University of Washington, where his team studies the molecular machinery of chromosome separation during reproductive cell division.

Credit: Charles Asbury

This natural safeguard prevents incorrect chromosome counts and misalignments that lead to infertility, miscarriage, or congenital conditions.

"Mistakes during reproductive cell division cause these problems, but what exactly goes wrong is often not understood," said Adele Marston of the Wellcome Trust Center for Cell Biology at the University of Edinburgh in Scotland and lead author of the study. Understanding normal protective mechanisms like the one newly discovered might suggest where things can go awry.

Marston is part of an international team studying meiosis – the type of cell division that splits an organism's original number of chromosomes in half for sexual reproduction. Meiosis occurs, for example, to create sperm or egg cells. The reduction allows offspring to inherit half their chromosomes from their father, and half from their mother.

"During cell division," she said, "chromosomes must be precisely sorted in an elaborate choreography where chromosomes pair up and then part in a sequence."

However, the arrangement gets complicated during the early stages of reproductive cell division. Instead of just pairs of chromosomes, the spindle-like apparatus in cells that pulls chromosomes apart has to deal with quartets. Each contains two 'sister chromatids' coming from the mother linked to two coming from the father A chromatid is either of the two strands formed when a chromosome is duplicated; sister chromatids are identical copies.

"The correct outcome for the first stage of meiosis," explained Dr. Charles L. Asbury, professor of physiology and biophysics at the University of Washington, "is for the sister chromatids to migrate together rather than to separate." Asbury is the senior author of the study.

In all types of cell division, he noted, sister chromatids are held together at first by cohesion. But in the earlier stages of reproductive cell division, the research team discovered that a strong, extra–tight linkage joins the sister chromatids.

When cells prepare to divide, molecular machines, called kinetochores, show up and assume several roles. They both control and drive chromosome movement. They set the timing for other cell division events, including the actual splitting of the chromosomes.

The kinetochores consist of an array of proteins that bind to the tips of miniscule, fiber-like structures called microtubules. The tips act as motors. The kinetochore converts the lengthening and shortening of the microtubules tips into useful force to move chromosomes.

The researchers determined that, during the early stages of meiosis, kinetochores between sister chromosomes mechanically fuse. The tethering keeps chromosomes from separating prematurely and ending up misplaced.

The fused kinetochores contain more binding elements than do single kinetochores, and form sturdy, hard-to-rupture attachments. A protein complex called monopolin is found inside cells during the early stages of reproductive cell division. It appears to be behind this modification. Monopolin alone was able to fuse kinetochore particles in a lab dish in the absence of other factors.

The researchers believe that the kinetochore fusion is a basic mechanism for the proper distribution of chromosomes in healthy cells. This feature of reproductive cell division is conserved across species and fundamental to carrying out expected patterns of genetic inheritance.

In this study, the researches worked with a simple life form, baker's yeast, and used advanced, highly sophisticated techniques. These included genetic manipulation, laser trapping and fluorescence microscopy.

"We combined genetic control of the cell cycle with biophysical manipulation of a complex protein machine – the kinetochore – at a single particle level," Asbury said. "I think our work will guide others who are studying molecular machineries that are regulated according to the cell cycle."


This research was supported by the Wellcome Trust, the National Institutes of Health, a Packard Fellowship, the Ludwig Institute for Cancer Research and the Sidney Kimmel Foundation.

In addition to Marston and Asbury, other key authors of the report are Krishna K. Sarangapani of the UW Department of Physiology and Biophysics in Seattle and Eris Duro of the University of Edinburgh. The other senior leader of the study was Sue Biggins of the Fred Hutchison Cancer Research Center in Seattle and the UW Department of Biochemistry.

Leila Gray | Eurek Alert!
Further information:

Further reports about: Cells Health Medicine Trust avoid chromosomes confusion kinetochore meiosis reproductive

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>