Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells simply avoid chromosome confusion

16.09.2014

Reproductive cell division has a mechanical safeguard against errors

Reproductive cell division has evolved a simple, mechanical solution to avoid chromosome sorting errors, researchers report in the Sept. 11 Science Express.


This is atotal internal reflection fluorescence (TIRF) microscope used in Charles Asbury's lab at the University of Washington, where his team studies the molecular machinery of chromosome separation during reproductive cell division.

Credit: Charles Asbury

This natural safeguard prevents incorrect chromosome counts and misalignments that lead to infertility, miscarriage, or congenital conditions.

"Mistakes during reproductive cell division cause these problems, but what exactly goes wrong is often not understood," said Adele Marston of the Wellcome Trust Center for Cell Biology at the University of Edinburgh in Scotland and lead author of the study. Understanding normal protective mechanisms like the one newly discovered might suggest where things can go awry.

Marston is part of an international team studying meiosis – the type of cell division that splits an organism's original number of chromosomes in half for sexual reproduction. Meiosis occurs, for example, to create sperm or egg cells. The reduction allows offspring to inherit half their chromosomes from their father, and half from their mother.

"During cell division," she said, "chromosomes must be precisely sorted in an elaborate choreography where chromosomes pair up and then part in a sequence."

However, the arrangement gets complicated during the early stages of reproductive cell division. Instead of just pairs of chromosomes, the spindle-like apparatus in cells that pulls chromosomes apart has to deal with quartets. Each contains two 'sister chromatids' coming from the mother linked to two coming from the father A chromatid is either of the two strands formed when a chromosome is duplicated; sister chromatids are identical copies.

"The correct outcome for the first stage of meiosis," explained Dr. Charles L. Asbury, professor of physiology and biophysics at the University of Washington, "is for the sister chromatids to migrate together rather than to separate." Asbury is the senior author of the study.

In all types of cell division, he noted, sister chromatids are held together at first by cohesion. But in the earlier stages of reproductive cell division, the research team discovered that a strong, extra–tight linkage joins the sister chromatids.

When cells prepare to divide, molecular machines, called kinetochores, show up and assume several roles. They both control and drive chromosome movement. They set the timing for other cell division events, including the actual splitting of the chromosomes.

The kinetochores consist of an array of proteins that bind to the tips of miniscule, fiber-like structures called microtubules. The tips act as motors. The kinetochore converts the lengthening and shortening of the microtubules tips into useful force to move chromosomes.

The researchers determined that, during the early stages of meiosis, kinetochores between sister chromosomes mechanically fuse. The tethering keeps chromosomes from separating prematurely and ending up misplaced.

The fused kinetochores contain more binding elements than do single kinetochores, and form sturdy, hard-to-rupture attachments. A protein complex called monopolin is found inside cells during the early stages of reproductive cell division. It appears to be behind this modification. Monopolin alone was able to fuse kinetochore particles in a lab dish in the absence of other factors.

The researchers believe that the kinetochore fusion is a basic mechanism for the proper distribution of chromosomes in healthy cells. This feature of reproductive cell division is conserved across species and fundamental to carrying out expected patterns of genetic inheritance.

In this study, the researches worked with a simple life form, baker's yeast, and used advanced, highly sophisticated techniques. These included genetic manipulation, laser trapping and fluorescence microscopy.

"We combined genetic control of the cell cycle with biophysical manipulation of a complex protein machine – the kinetochore – at a single particle level," Asbury said. "I think our work will guide others who are studying molecular machineries that are regulated according to the cell cycle."

###

This research was supported by the Wellcome Trust, the National Institutes of Health, a Packard Fellowship, the Ludwig Institute for Cancer Research and the Sidney Kimmel Foundation.

In addition to Marston and Asbury, other key authors of the report are Krishna K. Sarangapani of the UW Department of Physiology and Biophysics in Seattle and Eris Duro of the University of Edinburgh. The other senior leader of the study was Sue Biggins of the Fred Hutchison Cancer Research Center in Seattle and the UW Department of Biochemistry.

Leila Gray | Eurek Alert!
Further information:
http://www.uw.edu

Further reports about: Cells Health Medicine Trust avoid chromosomes confusion kinetochore meiosis reproductive

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>