Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells Use Same Machinery to Import and Export Goods

Research suggests a new level of regulation for cellular export process by molecules previously assumed to be dedicated to import activities.

In the bustling economy of the cell, little bubbles called vesicles serve as container ships, ferrying cargo to and from the port - the cell membrane. Some of these vesicles, called post-Golgi vesicles, export cargo made by the cell's protein factory.

Scientists have long believed that other, similar vesicles handle the reverse function, importing life-supporting nutrients and proteins through an independent process. By using a finely honed type of microscopy to more precisely examine these transactions, new research shows the processes are not as independent as assumed: certain molecules handle cargo moving in both directions. Like stevedores, they're involved in both loading and unloading the cell's container ships.

Jyoti Jaiswal, a research assistant professor, and Sanford Simon, head of the Laboratory of Cellular Biophysics at Rockefeller University, examined the most common form of cellular export process called constitutive exocytosis, a continual ferrying of goods involved in the regular life and maintenance of all eukaryotic cells. This sort of shipping was assumed to end with the vesicles fusing completely to the membrane and delivering their whole load of proteins and lipids, in contrast to the more discriminating process by which similar container ships import proteins from outside the cell, called endocytosis. But, in a paper to be published June 26 in Cell, Jaiswal and Simon show that some of the key molecules regulating endocytosis, such as clathrin, dynamin and actin, are also at work in exocytosis.

"In retrospect, it makes perfect sense," Jaiswal says. "But at first we thought we had to be wrong because they had been defined as endocytic molecules." Adds Simon: "Once we took a step back from the dogma, we saw that cells employ these molecules for import and export. Then everything fell into place. We should stop stereotyping molecules as dedicated for this or that purpose. It puts on the blinders. There's an advantage in biology of sometimes just looking without a hypothesis."

The researchers used a special form of microscopy (total internal reflection fluorescence microscopy) capable of focusing solely on the narrow plane in which the vesicle and membrane merge. "It's a little like the guy looking under the streetlight for his keys because it's the only place he can see, but we've actually arranged for the streetlight to be focused on exactly where we're interested," Simon says. "We get the vesicles at the point of fusion without the background noise of everything else going on inside the cell."

For the first time, Jaiswal was able to observe individual post-Golgi vesicles as they deliver cargo in their lumen and cargo carried in the membrane shell that surrounds the vesicle. This ability revealed behaviors that were not expected. The researchers showed first that the most common delivery of post-Golgi cargo is a so-called kiss-and-run exchange in which the vesicle partially merges with the membrane and delivers some, but not all, of its contents. Some vesicles, those packing neurotransmitters, for instance, are mobilized by a flood of calcium to spill their haul, signaling nearby cells. By adjusting the levels of calcium inside the cell, the researchers definitively found that calcium did not affect constitutive exocytosis of post-Golgi vesicles. Then they successively inhibited three molecules known for their membrane-bending role in endocytosis -- clathrin, dynamin and actin. In the absence of any one of these molecules, the researchers found that the vesicles merged fully with the membrane and disgorged all their cargo, which they had shown was an aberration in exocytosis, not the rule, as had been previously assumed. Together, the experiments demonstrate that cells employ some of the same molecules for importing and exporting cargo. "They use the same machinery for both," Jaiswal says. "This blurs the line between endocytosis and exocytosis. Perhaps we should just call it membrane trafficking."

The researchers do not yet know the function of this regulation of exocytosis. They are investigating other molecules' roles in the process to further understand the role and regulation of this process.

Brett Norman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>