Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells with double vision

19.02.2009
How one and the same nerve cell reacts to two visual areas

In comparison to many other living creatures, flies tend to be small and their brains, despite their complexity, are quite manageable. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now ascertained that these insects can make up for their low number of nerve cells by means of sophisticated network interactions.

The neurobiologists examined nerve cells that receive motion information in their input region from only a narrow area of the fly's field of vision. Yet, thanks to their linking with neighbouring cells, the cells respond in their output regions to movements from a much wider field of vision. This results in a robust processing of information. Nature Neuroscience, February 8, 2009.

The complexity of the human brain is remarkable: It contains billions of nerve cells, each of which is connected with its neighbours via many thousands of contacts. The result is a multifaceted network which stores and processes many types of information. In comparison, the brain of a fly seems fairly simple with its 250 000 nerve cells. For example, a small network of only 60 nerve cells in each cerebral hemisphere suffices the blowfly to integrate visual motion information. The resulting information is then used in the control and correction of the fly's flight manoeuvres. However, flies clearly demonstrate just how efficient these 60 cells actually are when they dodge obstacles while flying at high speed and land upside-down on the ceiling. No wonder neurobiologists find the brain of the fly so fascinating!

Rationing resources

Thanks to the comparatively small number of nerve cells in the fly's visual flight control centre, the connections and functions of the cells involved can be examined in greater detail. It soon became apparent that the 60 nerve cells are further sub-divided into several individual cell groups, each of which is responsible for the processing of certain patterns of movement. A group of ten cells, known as the VS-cells, respond to rotational movements of the fly, for example. Each of these ten cells receives its visual information from only a narrow vertical strip of the fly's eye - the cell's "receptive field". Since the VS-cells are arranged parallel to each other, the fly's field of vision is completely covered by the vertical strips of the ten cells on each side of the fly's brain (the figure shows three of the ten VS-cells).

Complexity by means of connectivity

"However, the most fascinating aspect of these VS-cells is that the closer we examined the network, the more complex it appeared", group leader Alexander Borst reports. He and his group at the Max Planck Institute of Neurobiology are devoted to investigating the motion vision of flies. Only recently, Borst's co-worker Jürgen Haag showed that VS-cells are connected on two different levels. It was well known that in their input regions, the cells collect incoming signals from nerve cells which represent local motion information coming from the eye. Yet, it came as a surprise that the cells had a second source of information. The scientists found electrical connections between neighbouring VS-cells in the cells' output regions. Computer simulations of this network led to the following assumption: Information received from a VS-cell's "own" receptive field is first compared with the information received by its neighbouring cells. Only then is the information relayed to cells further downstream in the network for the purpose of flight control.

Getting to the bottom of it

The immediate prediction from this work was somewhat of a surprise. Could a single cell have two different receptive fields, depending on which part of the cell is taken into consideration? In Martinsried, the neurobiologist Yishai Elyada now looked at this question. He examined the reactions of the VS-cells to moving stimuli using a large variety of techniques. The breakthrough came when he used a special microscopy technique which visualizes changes in the concentrations of calcium within the cells. The calcium concentration in many kinds of nerve cells, including VS cells, changes when the cell becomes active. Changes in the calcium level therefore reveal when and where a nerve cell reacts to a stimulus.

In order to determine the receptive field of each VS-cell, Elyada presented moving stripe patterns to the flies while simultaneously monitoring the changes in the calcium levels within the cells. The results correlated well with the scientist's predictions. In their input region, VS-cells do indeeed respond to movement in only a narrow area of the visual field. In contrast, in the cells' output region, each cell also responds to movement in the receptive fields of its neighbouring cells. The prior assumption that the receptive field of a nerve cell is a single unit must therefore be re-evaluated. In future, such statements need to distinguish between the input and the output regions of the cell - at least when referring to VS-cells. Such spatial separation within a single cell took the scientists by surprise. However, as far as the fly is concerned, it is a very useful attribute. Model simulations demonstrated that a network that is comprised of such "double input cells" can process visual motion information much more efficiently.

Step by step approach

"With these results, the VS-cell network is now one of the best understood circuits in the fly's nervous system", Alexander Borst recapitulates the group's work of the last few years. The scientists' next goal is to ascertain whether a malfunction of the VS network has any direct bearing on the fly's flight skills. "For when it comes down to influencing a certain pattern of behaviour, cells and networks that were not taken into account up to now may gain importance", Borst speculates. Little by little, the scientists thus approach ever more complex networks until, one day, we can hopefully also comprehend human visual processing - right down to the single nerve cell.

Original work:

Yishai M. Elyada, Jürgen Haag, Alexander Borst

Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons

Nature Neuroscience, February 8th, 2009

Dr. Stefanie Merker | EurekAlert!
Further information:
http://www.mpg.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>