Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells' sensing hairs are made

09.06.2011
Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from UC Davis published this week in the journal Nature Cell Biology provides new insights into how these cilia are assembled.

“It’s a basic discovery, but with implications for understanding disease,” said Jonathan Scholey, professor of molecular and cellular biology at UC Davis and senior author of the study. Understanding how cilia are assembled and function can help scientists understand how conditions such as polycystic kidney disease and some growth and development disorders arise.

Cilia are built from bundles of microtubules made of a protein called tubulin. Scholey’s team discovered how two subunits of tubulin are winched into place by a type of protein motor belonging to a family of proteins called kinesins.

Scholey’s laboratory works with the soil roundworm Caenorhabditis elegans, whose cilia are essentially the same as those of humans and other mammals. Postdoctoral scholar Limin Hao, Scholey and their colleagues screened a collection of worms for those with mutations that affected the cilia.

They found two genes which, when mutated, caused worms to lose the tips of their cilia. Both genes turned out to be subunits of tubulin that are assembled into different parts of the microtubule: one is found all along the microtubule, and the other is concentrated at the tip.

The UC Davis team used a combination of microscopy, molecular biology and computer modeling to study these two proteins. They found that both are moved into position by so-called kinesin-2 motors.

At one time, researchers had seen cilia as purely for movement, either moving a swimming cell through a fluid or moving fluid and suspended particles over the cell’s surface, Scholey said.

But in the late 1990s, researchers discovered that cilia were also involved in detecting signaling molecules that control gene expression and cell behavior. This signaling is vital for coordinating cell growth and the orderly development of tissues, for example in establishing left/right asymmetry in developing embryos.

“Recent work shows that cilia are ubiquitous in signaling,” Scholey said. In earlier work, Scholey’s lab linked a defect in the kinesins that assemble cilia to Bardet-Biedl disease, which causes blindness, kidney disease and learning difficulties.

Coauthors of the paper are: Melanie Thein, Ingrid Brust-Mascher, Gul Civelekoglu-Scholey and Seyda Acar, all at UC Davis; Yun Lu and Shai Shaham, Rockefeller University, New York; and Bram Prevo, Vrije Universiteit Amsterdam, The Netherlands, who was a visiting scholar in Scholey’s laboratory. Hao is now a researcher at Harvard Medical School and Thein is now a writer/editor at the UC Davis Cancer Center. The work was funded by grants from the National Institutes of Health.

Media contact(s):
Jonathan Scholey, Molecular and Cellular Biology, (530) 752-2271, jmscholey@ucdavis.edu

Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>