Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How cells' sensing hairs are made

Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from UC Davis published this week in the journal Nature Cell Biology provides new insights into how these cilia are assembled.

“It’s a basic discovery, but with implications for understanding disease,” said Jonathan Scholey, professor of molecular and cellular biology at UC Davis and senior author of the study. Understanding how cilia are assembled and function can help scientists understand how conditions such as polycystic kidney disease and some growth and development disorders arise.

Cilia are built from bundles of microtubules made of a protein called tubulin. Scholey’s team discovered how two subunits of tubulin are winched into place by a type of protein motor belonging to a family of proteins called kinesins.

Scholey’s laboratory works with the soil roundworm Caenorhabditis elegans, whose cilia are essentially the same as those of humans and other mammals. Postdoctoral scholar Limin Hao, Scholey and their colleagues screened a collection of worms for those with mutations that affected the cilia.

They found two genes which, when mutated, caused worms to lose the tips of their cilia. Both genes turned out to be subunits of tubulin that are assembled into different parts of the microtubule: one is found all along the microtubule, and the other is concentrated at the tip.

The UC Davis team used a combination of microscopy, molecular biology and computer modeling to study these two proteins. They found that both are moved into position by so-called kinesin-2 motors.

At one time, researchers had seen cilia as purely for movement, either moving a swimming cell through a fluid or moving fluid and suspended particles over the cell’s surface, Scholey said.

But in the late 1990s, researchers discovered that cilia were also involved in detecting signaling molecules that control gene expression and cell behavior. This signaling is vital for coordinating cell growth and the orderly development of tissues, for example in establishing left/right asymmetry in developing embryos.

“Recent work shows that cilia are ubiquitous in signaling,” Scholey said. In earlier work, Scholey’s lab linked a defect in the kinesins that assemble cilia to Bardet-Biedl disease, which causes blindness, kidney disease and learning difficulties.

Coauthors of the paper are: Melanie Thein, Ingrid Brust-Mascher, Gul Civelekoglu-Scholey and Seyda Acar, all at UC Davis; Yun Lu and Shai Shaham, Rockefeller University, New York; and Bram Prevo, Vrije Universiteit Amsterdam, The Netherlands, who was a visiting scholar in Scholey’s laboratory. Hao is now a researcher at Harvard Medical School and Thein is now a writer/editor at the UC Davis Cancer Center. The work was funded by grants from the National Institutes of Health.

Media contact(s):
Jonathan Scholey, Molecular and Cellular Biology, (530) 752-2271,

Andy Fell, UC Davis News Service, (530) 752-4533,

Andy Fell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>