Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Transplantation reports consistent and successful islet isolations offer diabetes hope

04.06.2010
A team of researchers from several collaborating Baylor University research centers and from Japan's Okayama Graduate School of Medicine have found a way to more consistently isolate pancreatic islet cells from brain dead donors using ductal injection (DI), a process that immediately cools donor islet cells at the injection site. The more successful islet isolation process resulted in the three type 1-diabetes patients, who received islet cell transplants, becoming insulin independent.

Their study is published in issue 19(3) of Cell Transplantation and it is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

"Inconsistent islet isolation is one of the important issues in clinical islet transplantation," said Dr. Shinichi Matsumoto, the research team's lead author. "Failure of donor islet isolation often results from the loss of the donor pancreas. Our simple modification of the retrieval process appears valuable for assuring greater success in islet transplantation."

Ductal injection is a procedure that modifies the islet isolation process using a cooling solution on the pancreatic islet cells derived from brain-dead donors. The cooling solution, applied at the donor's pancreatic ductal site, aids the viability of the islet cells.

The team successfully isolated islet cells in the DI group seven times while only three out of eight islet cell groups were isolated in the nonductal injection group. When islets from the DI group were transplanted into three type 1 diabetic patients, all three became insulin independent.

"DI significantly improved the quantity and quality of isolated islets and resulted in a high success rate of clinical islet transplantation," said Dr. Matsumoto.

According to the research team, a fifty percent success rate for clinical islet isolation has been standard; they were able to achieve a better than 80 percent success rate using DI.

The team reported that there were no significant demographic or clinical differences in the two patient groups receiving islet transplants, nor were there significant differences in the donated pancreata. All donor pancreata were preserved for less than six hours. Each patient received two islet preparations.

"In the DI group, the fasting blood glucose of all three patients improved after a single islet transplantation, and improved further after the second transplantation," commented Dr. Matsumoto. "None of these patients experienced subsequent hypoglycemia, and all three became insulin independent."

The team had recently shown that the DI process was successful in animal models because DI prevented tissue and cell death, suggesting that DI improved the quality and quantity of the isolated islet cells destined for transplantation.

"The number of islets isolated from donor pancreata continues to be quite variable and many times are not sufficient for clinical transplantation" said Dr. Rodolfo Alejandro, section editor for Cell Transplantation and Professor of Medicine at the University of Miami Miller School of Medicine. "This paper describes a novel approach to improve islet isolation yields. These are promising results that need to be confirmed in a randomized concurrent protocol".

Contact: Dr. Shinichi Matsumoto, Baylor All Saints Medical Center, Baylor Research Institute 1400 8th Avenue, Fort Worth, Texas 76104, USA. Tel: 817-922-2570 Fax 817-922-4645 Email: shinichm@baylorhealth.edu

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Randolph Fillmore, www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>