Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Transplantation reports consistent and successful islet isolations offer diabetes hope

04.06.2010
A team of researchers from several collaborating Baylor University research centers and from Japan's Okayama Graduate School of Medicine have found a way to more consistently isolate pancreatic islet cells from brain dead donors using ductal injection (DI), a process that immediately cools donor islet cells at the injection site. The more successful islet isolation process resulted in the three type 1-diabetes patients, who received islet cell transplants, becoming insulin independent.

Their study is published in issue 19(3) of Cell Transplantation and it is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

"Inconsistent islet isolation is one of the important issues in clinical islet transplantation," said Dr. Shinichi Matsumoto, the research team's lead author. "Failure of donor islet isolation often results from the loss of the donor pancreas. Our simple modification of the retrieval process appears valuable for assuring greater success in islet transplantation."

Ductal injection is a procedure that modifies the islet isolation process using a cooling solution on the pancreatic islet cells derived from brain-dead donors. The cooling solution, applied at the donor's pancreatic ductal site, aids the viability of the islet cells.

The team successfully isolated islet cells in the DI group seven times while only three out of eight islet cell groups were isolated in the nonductal injection group. When islets from the DI group were transplanted into three type 1 diabetic patients, all three became insulin independent.

"DI significantly improved the quantity and quality of isolated islets and resulted in a high success rate of clinical islet transplantation," said Dr. Matsumoto.

According to the research team, a fifty percent success rate for clinical islet isolation has been standard; they were able to achieve a better than 80 percent success rate using DI.

The team reported that there were no significant demographic or clinical differences in the two patient groups receiving islet transplants, nor were there significant differences in the donated pancreata. All donor pancreata were preserved for less than six hours. Each patient received two islet preparations.

"In the DI group, the fasting blood glucose of all three patients improved after a single islet transplantation, and improved further after the second transplantation," commented Dr. Matsumoto. "None of these patients experienced subsequent hypoglycemia, and all three became insulin independent."

The team had recently shown that the DI process was successful in animal models because DI prevented tissue and cell death, suggesting that DI improved the quality and quantity of the isolated islet cells destined for transplantation.

"The number of islets isolated from donor pancreata continues to be quite variable and many times are not sufficient for clinical transplantation" said Dr. Rodolfo Alejandro, section editor for Cell Transplantation and Professor of Medicine at the University of Miami Miller School of Medicine. "This paper describes a novel approach to improve islet isolation yields. These are promising results that need to be confirmed in a randomized concurrent protocol".

Contact: Dr. Shinichi Matsumoto, Baylor All Saints Medical Center, Baylor Research Institute 1400 8th Avenue, Fort Worth, Texas 76104, USA. Tel: 817-922-2570 Fax 817-922-4645 Email: shinichm@baylorhealth.edu

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Randolph Fillmore, www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>