Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Cell surgery’ using nano-beams

04.04.2011
Using a simple glass capillary, atomic physicists at RIKEN are developing an ultra-narrow ion beam that pinpoints a part of organelles in a living cell, enabling biologists to visualize how the damage affects cell activities.

From a nucleus to mitochondria, lysosomes and the nuclear pore complex, every animal cell contains a range of organelles within just 1–100 micrometers of space. How might cell functions change if one of these organelles becomes damaged? Despite rapid progress in molecular biology research, such experiments have yet to be fully developed because organelles are too small and fragile to be manipulated individually.

Physicist Walter Meissl has been trying to solve this problem by developing an ultra-narrow ion beam that can pinpoint a single organelle while leaving the surrounding cellular functions intact. Since joining RIKEN in March 2009, the Austrian postdoctoral fellow has succeeded in hitting a nucleus with the ‘nano-beam’, and is now preparing for his ultimate target: a centrosome, one of the smallest organelles. “If a nucleus was like a soccer ball, a centrosome would be only one little point on that ball,” Meissl says.

Creating nano-beams using glass capillaries

Meissl is a central figure of the nano-beam project, which was originally established with a grant from the President’s Fund for fiscal 2007 and 2008. The project was initiated by Yasunori Yamazaki, chief scientist of the Atomic Physics Laboratory at the RIKEN Advanced Science Institute, in collaboration with Naoko Imamoto, chief scientist of the Cellular Dynamics Laboratory at the same institute (Fig. 1). Although the grant ended in March 2009, the researchers still continue to work together in an effort to implement what they call ‘cell surgery’.

Previously from the Vienna University of Technology in Austria, Meissl first heard about the project when Yamazaki gave a talk at his institute in 2008. “I was intrigued with the idea of getting into the interdisciplinary work between physics and biology,” says Meissl, who then decided to join Yamazaki’s laboratory.

Meissl’s work is a small but highly innovative product of Yamazaki’s lab, the main focus of which is the investigation of exotic collision products such as antihydrogen atoms and the development of advanced cooling techniques to capture these particles. The lab has also been developing slow, highly charged ion beams (the aggregation of charged atoms and molecules) with nanometer-scale diameters using glass capillaries. Yamazaki says it is extremely difficult to focus highly charged ions into nano-sized spots, and other groups around the world have been attempting to do so using dedicated lenses that combine the effects of electric and magnetic fields. No-one had thought of using glass, because it does not conduct electricity and is susceptible to the build-up of static electricity, which deteriorates the quality of the ion beam, he says.

Instead, Yamazaki took advantage of glass’s insulation properties. When ions are first injected into the inlet of a glass capillary, they accumulate on the capillary’s inner wall; when the accumulation of ion charge on the inner walls becomes sufficient, subsequently injected ions are naturally guided all the way to the outlet. At a cost of 50 yen (US$0.40) per capillary, “it was so simple, like a joke, but we could confirm the beams were strong enough,” says Yamazaki.

A tweak for biological applications

Nano-beams can be used to manipulate molecules and atoms on surfaces, so demand is growing for their use in the fabrication of semiconductor materials. But Yamazaki wanted to use the technology for unconventional purposes, and sought ideas at one of RIKEN’s informal chief scientist meetings, at which chief scientists with various backgrounds come together to learn about each other’s activities. Yamazaki became intrigued with the potential biological applications of his nano-beams, and suggested a collaboration with Imamoto, whose primary area of study is in the regulation and maintenance of nuclear function. “But at first, my idea was rebuffed,” Yamazaki says, “because the beams can only be produced in a vacuum chamber, and cells die without air.”

Yet Yamazaki was undaunted and hit upon the idea of adding a thin glass cap at the capillary outlet so it can be immersed in a liquid while maintaining the capillary vacuum[1, 2] (Fig. 2). The beam can be controlled so that it travels only 100 nanometers to several micrometers and the ions have enough energy to penetrate the window, allowing it to be used to irradiate a single organelle, or even a part of one, Yamazaki says. Another advantage of glass is that it is transparent and thus enables researchers to observe the irradiation point directly using an optical microscope. Compared to conventional ionizing radiation, which does not have the precision or selectivity of the nano-beam, "the new beam could lead us to observe more precisely how the damage to an organelle affects overall cell dynamics,” Imamoto says.

A physicist learns how to culture cells

Yoshio Iwai, a postdoctoral researcher who recently left the laboratory, spent the first 18 months of the project constructing a dedicated beam line for a small tandem accelerator at RIKEN. Now, much of the work has been handed over to Meissl. Unlikely for a physicist, he started with learning from Imamoto how to culture a cell, multiply it, and prepare solutions for experiments. “It is very exciting and totally different from my previous work because a living cell shows unpredictable results, a drastic change from surface physics,” Meissl says.

Meissl also made some additional changes to the beamlines. “Usually in physics, you fight for more ions, more intensity. But for biological experiments, we need as little radiation as possible because even a single particle can harm a cell.” He installed a fast beam switch that allows attenuation of the ion beam down to short packets containing as little as a single ion.

From nucleus to centrosome

The most difficult part of the experiments is manually setting up the cell in the best position for nano-beam irradiation, Meissl says (Fig. 3). An equally important step is to optimize the strength of the ion beam and calculate the right irradiation time. By switching the beam on and off in less than one microsecond, Meissl takes multiple shots at the cell surface, but each time he obtains different results. “I need much more target practice,” he says. “It’s not as easy an experiment as it looks. A lot of patience is required,” Imamoto adds.

In the summer of 2009, Meissl succeeded in hitting a nucleus, and the cell died immediately. After a number of attempts, he has fine-tuned the strength of the beam and is now able to hit the nucleus while keeping the cell alive. He is now preparing to target a centrosome. At less than one micrometer in diameter, the centrosome exists as a pair of organelles floating near the nucleus, and organizes microtubules to divide chromosomes into daughter cells during cell division. Yamazaki and Imamoto are curious to see what will happen if one of the pair is damaged, but Meissl says it is incomparably more difficult than targeting a nucleus.

“The project is just becoming science,” Yamazaki says. “We have just begun to explore the potential of this new technique that can lead to unprecedented applications bridging biology and physics.”

Journal information
[1] T. Ikeda, Y. Kanai, T. M. Kojima, Y. Iwai, T. Kambara, M. Hoshino, T. Nebiki, T. Narusawa & Y. Yamazaki. Production of a microbeam of slow highly charged ions with a tapered glass capillary. Applied Physics Letters 89, 163502 (2006).

[2] Y. Iwai, T. Ikeda, T. M. Kojima, Y. Yamazaki, K. Maeshima, N. Imamoto, T. Kobayashi, T. Nebiki, T. Narusawa & G. P. Pokhil. Ion irradiation in liquid of ìm3 region for cell surgery." Applied Physics Letters 92, 023509 (2008).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/grants/6262
http://www.researchsea.com

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>