Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Signaling Classification System Gives Researchers New Tool

05.07.2010
Using ever-growing genome data, scientists with the Department of Energy’s (DOE) Oak Ridge National Laboratory and the University of Tennessee are tracing the evolution of the bacterial regulatory system that controls cellular motility, potentially giving researchers a method for predicting important cellular functions that will impact both medical and biotechnology research.

A new study from the Joint Institute for Computational Sciences, a research venture between ORNL and UT, has demonstrated how knowledge of biological systems can be derived by computational interrogation of genomic sequences. The results have implications for areas ranging from medicine to bioenergy.

“We now have hundreds of millions of DNA sequences from all sorts of organisms deposited in databases. However, our abilities to translate raw genomic data into useful knowledge are still very limited,” said Igor Zhulin, joint faculty professor and principal investigator.

“We applied our computational skills to glean more information about a biological system that has fascinated researchers for more than a century. This is a molecular signal transduction system that allows bacteria to navigate in the environment pretty much in the same way that higher organisms, including humans, do—by detecting signals (e.g., visual or chemical cues) and then moving toward favorable environments and away from dangerous ones.”

In general, signal transduction systems in bacteria are very simple, consisting of only one or two proteins that regulate expression of various genes in response to changes in the environment. The navigation system, however, is significantly more complex and in some bacteria may involve dozens of different proteins.

How such complexity arose was unknown before this study, which has discovered intermediate signaling systems in bacteria that contain elements of both simple systems that regulate gene expression and the complex navigation system. This provides an argument for the gradual evolution of the navigation system from well-known transcriptional regulators that are much simpler in design, Zhulin said.

Because the navigation system of bacteria has been studied by scientists employing the latest advances in genetics, biochemistry, biophysics, structural biology and other traditional biological disciplines, the system has become one of the best understood molecular systems in nature.

“We took advantage of this knowledge,” said Kristin Wuichet, a postdoctoral fellow, who carried out the computational work. “Without it we would be unable to mine the genomic data intelligently.”

Wuichet sifted through trillions of letters of the DNA code to extract sequences encoding each component of this navigation system. Then, Wuichet and Zhulin designed a computational approach to classify these sequences by applying a variety of bioinformatics tools in a logical, step-by-step procedure.

“By using diverse computational methods, this study has revealed in remarkable detail how a simple two-component signaling pathway can evolve into complex systems like the ones that govern bacterial chemotaxis,” said James Anderson of the National Institutes of Health (NIH), who oversees gene regulatory network grants at the NIH’s National Institute of General Medical Sciences, which supported this work. “This computational approach will be of enormous value in uncovering the inner workings of beneficial and pathogenic microorganisms that cannot be studied using traditional laboratory methods.”

The study has revealed more than a dozen versions of this navigation system and assigned hundreds of bacterial species to each of them. “To use a metaphor, one can compare this system to types of cars,” Zhulin explained. “Imagine, if you would have only seen two types of cars in your life, say a small two-door sedan and a mid-size SUV. By comparing the two, you might guess that there can be other types of cars out there, but you wouldn’t know exactly what they are. Prior to our study, we knew exact details of only two types of navigation system from two model organisms. Simply put, our work reveals that there are all kinds of things on the roads—luxury sedans, minivans, roadsters, pick-up trucks, and we know which bug is in which vehicle.”

Zhulin said the findings “will allow predicting how individual bacteria will use their 'vehicle' to get where they want to be, which is very important in order to be able to fight pathogenic organisms that direct their movement toward weak spots of our bodies.”

At the same time, ORNL researchers are making use of the findings in advanced bioenergy research.

“These same issues of microbial ‘navigation,’ or so-called chemotaxis, are important for microbial processing of biofuels,” said Paul Gilna, director of the ORNL-led DOE BioEnergy Science Center (BESC), a DOE Bioenergy Research Center supported by the Department’s Office of Science. “That’s why we were pleased to co-sponsor this research with the National Institutes of Health and leverage NIH resources to learn more about this process.”

BESC is searching for new cost-effective ways, using microbes, to convert plant cellulose to biofuels, a “green” alternative to oil and coal.

“Cellulases from microbial sources are key enzymes in this process and come in different shapes and forms that are difficult to decipher from DNA sequence alone,” said Gilna. “This study gives us a powerful computational approach that we can now use to reveal new types of cellulolytic enzymes, as well as provide us with deeper insights into complex regulatory pathways that control their activity.”

“This work could significantly aid in our goal of producing microbes that are capable of carrying out all the steps in processing fuels from plant feedstocks,” Gilna added. “In this approach, which we term Consolidated BioProcessing, or CBP, we are working to develop microbes that can both deconstruct plant cellulosic components as well as process the released sugars into biofuels. Understanding better how such microbes can locate their respective substrates in a large biofermenter will greatly enable us to tune the efficiency of such processes, which could lead to profound improvements at a national level in the costs of producing biofuels.”

The paper describing this work, titled, “Origins and diversification of a complex signal transduction system in prokaryotes,” appears in the new journal Science Signaling by the publishers of the Science magazine and is available online at http://stke.sciencemag.org.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Barbara Penland | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>