Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the cell’s two genomes collide

06.02.2013
Plant and animal cells contain two genomes: one in the nucleus and one in the mitochondria. When mutations occur in each, they can become incompatible, leading to disease. To increase understanding of such illnesses, scientists at Brown University and Indiana University have traced one example in fruit flies down to the individual errant nucleotides and the mechanism by which the flies become sick.

Diseases from a mutation in one genome are complicated enough, but some illnesses arise from errant interactions between two genomes: the DNA in the nucleus and in the mitochondria. Scientists want to know more about how such genomic disconnects cause disease. In a step in that direction, scientists at Brown University and Indiana University have traced one such incompatibility in fruit flies down to the level of individual nucleotide mutations and describe how the genetic double whammy makes the flies sick.


Understanding a genetic double whammy
Bright areas surrounding darker oval nuclei denote the location of mitochondria in the stained cells of fruit fly ovaries. Brown and Indiana researchers have traced the genetic and biochemical roots of a disease that arose in flies from an incompatibility between the nuclear and mitochondrial genomes. Credit: Rand lab/Brown University

“This has relevance to human disease but it’s also relevant to all organisms because these two genomes are in all animals and all plants,” said David Rand professor of biology at Brown and senior author of the study in PLoS Genetics. “There are a lot of metabolic diseases that are mitochondrial in origin and they have peculiar genetic tracking — a two-part system needs to be considered.”

Five years ago at Brown, Rand and two postdoctoral researchers — Colin Meiklejohn, of Brown and Indiana University, and Kristi Montooth, now an assistant professor at Indiana University — began searching for an example in the convenient testbed of fruit flies. They started mixing and matching mitochondrial and nuclear genomes from different strains and species of flies that carried natural mutations produced during evolution to observe what conflicts might arise. They found that when they placed the “simw 501” mitochondrial DNA from Drosophila simulans flies into Drosophila melanogaster flies with “Oregon R” nuclear DNA, bad things happened.

The flies with this combination lived but had an array of problems. Their most noticeable flaw was that whisker-like bristles on their backs were only half the length of those in normal flies. The flies also had developmental delays, reproduced less effectively, and tired more quickly, which makes sense because the mitochondria is the cell’s power plant.

Once the team, including lead author Meiklejohn, had a bona fide mitochondrial-nuclear incompatibility to study, they could then begin looking for exactly where the problem lay and how it was causing disease. In the paper, they describe the genetic and biochemical experiments they conducted to find out.

Brown graduate student Marissa Holmbeck, the paper’s second author, measured the productivity of several enzymes in the mitochondria’s power generation process. Two enzymes that are derived entirely from nuclear genes ran just as well in the sick flies as in healthy ones, but three enzymes that are jointly managed by mitochondrial and nuclear genes lagged behind in activity.

“The different complexes that are jointly encoded by the mitochondrial and nuclear subunits, those are the ones where we are seeing the defect in activity,” Holmbeck said.

Each mutation alone, in fact, does little or no harm to flies. It is only when both are present that the flies fall ill.

Meanwhile, Meiklejohn and Montooth tracked those mutations to just two altered nucleotide letters — one in each genome. In the mitochondrial genome, a G to U mutation in an RNA suggested a problem with protein production inside the mitochondria. This was confirmed when they discovered an A to V mutation in the nuclear protein that adds an amino acid to this same mitochondrial RNA.

The biochemical and genetic evidence pointed to flaws in how fast the mitochondria of the sick flies could produce proteins needed to promote growth.

“The specifics of this paper are tracking that down to the individual nucleotide,” Rand said, “But the more general lesson is that this coevolution of mitochondrial and nuclear genes has been going on for millions of years in millions of organisms and is going on in human populations today.”

In human beings, a well-known mitochondrial disease, for example, is an aversion to exercise that is due to a mutation in the same mitochondrial RNA gene the team studied in fruit flies.

Rand and his group are now conducting new experiments to trace more mito-nuclear incompatibilities within a single species to their genetic and biochemical roots.

“This paper provided proof of principle that we can identify these things and map them to their nucleotides,” Rand said. “We want to ask how common is this and can we find other sources of this kind of breakdown in mito-nuclear crosstalk underlying disease.”

In addition to Rand, Montooth, Meiklejohn, and Holmbeck, other authors on the paper are Dawn Abt of Brown and Mohammad Siddiq of Indiana.

The National Institutes of Health funded the research with several grants, including GM072399, F31AG040925, R01GM067862, R01AG027849, and GM076812. The National Science Foundation funded the research with grant DEB-0839348. Support also came from Indiana University.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>