Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the cell’s two genomes collide

06.02.2013
Plant and animal cells contain two genomes: one in the nucleus and one in the mitochondria. When mutations occur in each, they can become incompatible, leading to disease. To increase understanding of such illnesses, scientists at Brown University and Indiana University have traced one example in fruit flies down to the individual errant nucleotides and the mechanism by which the flies become sick.

Diseases from a mutation in one genome are complicated enough, but some illnesses arise from errant interactions between two genomes: the DNA in the nucleus and in the mitochondria. Scientists want to know more about how such genomic disconnects cause disease. In a step in that direction, scientists at Brown University and Indiana University have traced one such incompatibility in fruit flies down to the level of individual nucleotide mutations and describe how the genetic double whammy makes the flies sick.


Understanding a genetic double whammy
Bright areas surrounding darker oval nuclei denote the location of mitochondria in the stained cells of fruit fly ovaries. Brown and Indiana researchers have traced the genetic and biochemical roots of a disease that arose in flies from an incompatibility between the nuclear and mitochondrial genomes. Credit: Rand lab/Brown University

“This has relevance to human disease but it’s also relevant to all organisms because these two genomes are in all animals and all plants,” said David Rand professor of biology at Brown and senior author of the study in PLoS Genetics. “There are a lot of metabolic diseases that are mitochondrial in origin and they have peculiar genetic tracking — a two-part system needs to be considered.”

Five years ago at Brown, Rand and two postdoctoral researchers — Colin Meiklejohn, of Brown and Indiana University, and Kristi Montooth, now an assistant professor at Indiana University — began searching for an example in the convenient testbed of fruit flies. They started mixing and matching mitochondrial and nuclear genomes from different strains and species of flies that carried natural mutations produced during evolution to observe what conflicts might arise. They found that when they placed the “simw 501” mitochondrial DNA from Drosophila simulans flies into Drosophila melanogaster flies with “Oregon R” nuclear DNA, bad things happened.

The flies with this combination lived but had an array of problems. Their most noticeable flaw was that whisker-like bristles on their backs were only half the length of those in normal flies. The flies also had developmental delays, reproduced less effectively, and tired more quickly, which makes sense because the mitochondria is the cell’s power plant.

Once the team, including lead author Meiklejohn, had a bona fide mitochondrial-nuclear incompatibility to study, they could then begin looking for exactly where the problem lay and how it was causing disease. In the paper, they describe the genetic and biochemical experiments they conducted to find out.

Brown graduate student Marissa Holmbeck, the paper’s second author, measured the productivity of several enzymes in the mitochondria’s power generation process. Two enzymes that are derived entirely from nuclear genes ran just as well in the sick flies as in healthy ones, but three enzymes that are jointly managed by mitochondrial and nuclear genes lagged behind in activity.

“The different complexes that are jointly encoded by the mitochondrial and nuclear subunits, those are the ones where we are seeing the defect in activity,” Holmbeck said.

Each mutation alone, in fact, does little or no harm to flies. It is only when both are present that the flies fall ill.

Meanwhile, Meiklejohn and Montooth tracked those mutations to just two altered nucleotide letters — one in each genome. In the mitochondrial genome, a G to U mutation in an RNA suggested a problem with protein production inside the mitochondria. This was confirmed when they discovered an A to V mutation in the nuclear protein that adds an amino acid to this same mitochondrial RNA.

The biochemical and genetic evidence pointed to flaws in how fast the mitochondria of the sick flies could produce proteins needed to promote growth.

“The specifics of this paper are tracking that down to the individual nucleotide,” Rand said, “But the more general lesson is that this coevolution of mitochondrial and nuclear genes has been going on for millions of years in millions of organisms and is going on in human populations today.”

In human beings, a well-known mitochondrial disease, for example, is an aversion to exercise that is due to a mutation in the same mitochondrial RNA gene the team studied in fruit flies.

Rand and his group are now conducting new experiments to trace more mito-nuclear incompatibilities within a single species to their genetic and biochemical roots.

“This paper provided proof of principle that we can identify these things and map them to their nucleotides,” Rand said. “We want to ask how common is this and can we find other sources of this kind of breakdown in mito-nuclear crosstalk underlying disease.”

In addition to Rand, Montooth, Meiklejohn, and Holmbeck, other authors on the paper are Dawn Abt of Brown and Mohammad Siddiq of Indiana.

The National Institutes of Health funded the research with several grants, including GM072399, F31AG040925, R01GM067862, R01AG027849, and GM076812. The National Science Foundation funded the research with grant DEB-0839348. Support also came from Indiana University.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>