Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cell mechanism discovery key to stopping breast cancer metastasis

02.01.2014
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah discovered a cellular mechanism that drives the spread of breast cancer to other parts of the body (metastasis), as well as a therapy which blocks that mechanism. The research results were published online in the journal Cell Reports on January 2.

"Genetic mutations do not drive this mechanism," said Alana Welm, PhD, senior author of the study, associate professor in the Department of Oncological Sciences, and an investigator at Huntsman Cancer Institute. "Instead, it's improper regulation of when genes turn on and off."

The new discovery focuses on a protein called RON kinase (RON), which signals some areas of tumor cell DNA to become active. Normally, RON operates mostly during embryonic development and is not highly expressed in healthy adults. But in about 50 percent of breast cancer cases, RON becomes re-expressed and reprograms genes responsible for metastasis, making them active.

"If there's an entire program in the tumor cell that's important for metastasis, blocking one small part of that program, for example, the action of a single gene, will probably not be an effective strategy," said Welm. "But if you could find a way to turn off the entire program, you're more likely to have the desired effect. We found that inhibiting RON turns off the entire metastasis program in these tumor cells.

"No one has ever described a specific pathway driving this kind of reprogramming in metastasis, much less a way to therapeutically block it,' Welm added. "Also, RON has not previously been known to be involved in reprogramming gene expression."

Future work will include investigating the potential of detecting the RON-dependent program in tumor cells as a way to identify patients that are more likely to develop metastases and as a predictor of therapeutic response to drugs that inhibit RON.

The article's co-authors include Stéphanie Cunha, Yi-Chun Lin, Elizabeth Goossen, and Christa DeVette from HCI, and Mark Albertella, Mark Mulvihill, and Stuart Thomson of OSI/Astellas. The work was funded by the DOD Breast Cancer Research Program Era of Hope Scholar Award, a Susan G. Komen for the Cure Career Catalyst Award, and Huntsman Cancer Foundation. Research reported in this publication utilized HCI's Microarray and Genomic Analysis Shared Resource and was supported by the National Cancer Institute of the National Institutes of Health under Award Number P30CA042014.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for world-class, state-of-the-art programs in multidisciplinary cancer research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers dedicated to improving the quality and effectiveness of care provided to patients with cancer.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>