Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai, global consortium develop stem cell tool to test Huntington’s treatments

06.07.2012
From skin cells to brain cells, new “disease in a dish” model offers step forward in understanding fatal inherited disorder and ways to test therapies for it

Cedars-Sinai scientists, in collaboration with expert colleagues around the globe, used stem cells to re-create Huntington’s Disease in a petri dish, allowing researchers for the first time to test potential treatments for the fatal inherited neurological disorder directly on human cells.

As outlined in a paper published online by Cell Stem Cell and slated for print in the journal’s Aug. 3 issue, scientists at Cedars-Sinai’s Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington’s disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington’s.

“Now that we’ve moved from skin cells to brain cells, the next step forward will be to test treatments we can move from the petri dish to the clinic,” said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. “In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It’s a new way of doing trailblazing science.”

This breakthrough is the latest example of an innovative use for stem cells, reprogramming them to create laboratory versions of diseases. This method has been used to mimic Parkinson’s disease, Alzheimer’s disease, ALS and spinal muscular atrophy. As these diseases all occur in living neurons – that patients can’t part with – the disease-in-a-dish models offer scientists an opportunity they never had before: to study in human cells how a disease attacks the neurons and plot strategies for fighting it.

The Huntington’s Disease iPSC Consortium united some of the world’s top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington’s patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington’s researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington’s, known to the public, for example, as the cause of folksinger Woody Guthrie’s death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington’s results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington’s, nor therapies to slow its progression.

The consortium showed Huntington’s cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or “stressing” them, and found that Huntington’s neurons died even faster. The trick with disease-in-a-dish models is verifying that the cells are, in fact, behaving in the same manner they would in a patient, said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study.

“It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques,” Mattis said. “It was very reassuring and significantly strengthens the value of this study.”

This new model will provide the foundation for a new round of experiments by the consortium funded by a new grant from the NIH and the California Institute for Regenerative Medicine.

The Cedars-Sinai’s Regenerative Medicine Institute has made a major commitment to projects like this Huntington’s study in which stem cell research helps to advance understanding of human disease and open new and innovative methods to identify treatments and cures. The institute has developed an induced pluripotent stem cell core facility and recruited faculty to work in this emerging area of regenerative medicine research.

“At last, we have a human cell model for this tragic disease that will be a powerful new tool in identifying treatments for these patients,” said Shlomo Melmed, MD, dean of the medical faculty at Cedars-Sinai and the Helena A. and Philip E. Hixon Chair in Investigative Medicine. “This development is a compelling example of how important iPS cells are to furthering our understanding and finding cures for diseases that are currently untreatable.”

The consortium includes: Cedars-Sinai Medical Center; Johns Hopkins University School of Medicine in Baltimore; University of California, Irvine; University of Wisconsin School of Medicine; Massachusetts General Hospital; Harvard Medical School; University of California, San Francisco; Cardiff University; Universita degli Studi di Milano; and the CHDI Foundation.

Funding for the research came from an American Recovery and Reinvestment Act grant from the NIH’s National Institute of Neurological Disorders and Stroke (NINDS Recovery Act grant number: RC2-NS069422 ), a grant from the CHDI Foundation, Inc. and CIRM.

Nicole White | Cedars-Sinai News
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>