Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai, global consortium develop stem cell tool to test Huntington’s treatments

06.07.2012
From skin cells to brain cells, new “disease in a dish” model offers step forward in understanding fatal inherited disorder and ways to test therapies for it

Cedars-Sinai scientists, in collaboration with expert colleagues around the globe, used stem cells to re-create Huntington’s Disease in a petri dish, allowing researchers for the first time to test potential treatments for the fatal inherited neurological disorder directly on human cells.

As outlined in a paper published online by Cell Stem Cell and slated for print in the journal’s Aug. 3 issue, scientists at Cedars-Sinai’s Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington’s disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington’s.

“Now that we’ve moved from skin cells to brain cells, the next step forward will be to test treatments we can move from the petri dish to the clinic,” said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. “In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It’s a new way of doing trailblazing science.”

This breakthrough is the latest example of an innovative use for stem cells, reprogramming them to create laboratory versions of diseases. This method has been used to mimic Parkinson’s disease, Alzheimer’s disease, ALS and spinal muscular atrophy. As these diseases all occur in living neurons – that patients can’t part with – the disease-in-a-dish models offer scientists an opportunity they never had before: to study in human cells how a disease attacks the neurons and plot strategies for fighting it.

The Huntington’s Disease iPSC Consortium united some of the world’s top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington’s patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington’s researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington’s, known to the public, for example, as the cause of folksinger Woody Guthrie’s death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington’s results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington’s, nor therapies to slow its progression.

The consortium showed Huntington’s cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or “stressing” them, and found that Huntington’s neurons died even faster. The trick with disease-in-a-dish models is verifying that the cells are, in fact, behaving in the same manner they would in a patient, said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study.

“It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques,” Mattis said. “It was very reassuring and significantly strengthens the value of this study.”

This new model will provide the foundation for a new round of experiments by the consortium funded by a new grant from the NIH and the California Institute for Regenerative Medicine.

The Cedars-Sinai’s Regenerative Medicine Institute has made a major commitment to projects like this Huntington’s study in which stem cell research helps to advance understanding of human disease and open new and innovative methods to identify treatments and cures. The institute has developed an induced pluripotent stem cell core facility and recruited faculty to work in this emerging area of regenerative medicine research.

“At last, we have a human cell model for this tragic disease that will be a powerful new tool in identifying treatments for these patients,” said Shlomo Melmed, MD, dean of the medical faculty at Cedars-Sinai and the Helena A. and Philip E. Hixon Chair in Investigative Medicine. “This development is a compelling example of how important iPS cells are to furthering our understanding and finding cures for diseases that are currently untreatable.”

The consortium includes: Cedars-Sinai Medical Center; Johns Hopkins University School of Medicine in Baltimore; University of California, Irvine; University of Wisconsin School of Medicine; Massachusetts General Hospital; Harvard Medical School; University of California, San Francisco; Cardiff University; Universita degli Studi di Milano; and the CHDI Foundation.

Funding for the research came from an American Recovery and Reinvestment Act grant from the NIH’s National Institute of Neurological Disorders and Stroke (NINDS Recovery Act grant number: RC2-NS069422 ), a grant from the CHDI Foundation, Inc. and CIRM.

Nicole White | Cedars-Sinai News
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>